Factorisation of orthogonal projectors

  • N. S. Sushchyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • V. M. Degnerys Peeklogic, Lviv, Ukraine
Keywords: special factorisation, orthogonal projector

Abstract

We study the problem of a special factorisation of an orthogonal projector~P acting in the Hilbert space L2(R) with dimkerP<. In particular, we prove that the orthogonal projector~P admits a special factorisation in the form
P=VV, where V is an isometric upper-triangular operator in the Banach algebra of all linear continuous operators in L2(R). Moreover, we
give an explicit formula for the operator V.

References

I. Gohberg, M. Krein, Theory of Volterra operators in Hilbert space and its applications, Nauka Publ., Moscow, 1967 (in Russian); Engl. transl.: Amer. Math. Soc. Transl. Math. Monographs, V.24, Amer. Math. Soc., Providence, RI, 1970.

S. Albeverio, R. Hryniv, Ya. Mykytyuk, Factorisation of non-negative Fredholm operators and inverse spectral problems for Bessel operators, Integr. equ. oper. theory, 64 (2009), 301–323.

D.R. Larson, Nest algebras and similarity transformations, Ann of Math. (2), 121 (1985), №2, 409–427.

Published
2021-06-22
How to Cite
Sushchyk, N. S., & Degnerys, V. M. (2021). Factorisation of orthogonal projectors. Matematychni Studii, 55(2), 181-187. https://doi.org/10.30970/ms.55.2.181-187
Section
Articles