Hadamard compositions of Gelfond-Leont’ev-Sǎlǎgean and Gelfond-Leont’ev-Ruscheweyh derivatives of functions analytic in the unit disk

  • M.M. Sheremeta Ivan Franko National University of Lviv, Lviv
Keywords: entire functions; several complex variables; dagonal maximal term; homogeneous polynomial

Abstract

For analytic functions $$f(z)=z+\sum\limits_{k=2}^{\infty}f_kz^k \mbox{ and } g(z)=z+\sum\limits_{k=2}^{\infty}g_kz^k$$ in the unit disk properties of the Hadamard compositions $D^n_{l,[S]}f*D^n_{l,[S]}g$ and $D^n_{l,[R]}f*D^n_{l,[R]}g$ of their Gelfond-Leont'ev-S$\check{\text{a}}$l$\check{\text{a}}$gean derivatives $$D^n_{l,[S]}f(z)=z+\sum\limits_{k=2}^{\infty}\left(\frac{l_1l_{k-1}}{l_k}\right)^nf_kz^k$$ and Gelfond-Leont'ev-Ruscheweyh derivatives
$$D^n_{l,[R]}f(z)=z+\sum\limits_{k=2}^{\infty}\frac{l_{k-1}l_n}{l_{n+k-1}}f_kz^k$$ are investigated. For study, generalized orders are used. A connection between the growth of the maximal term of the Hadamard composition of Gelfond-Leont'ev-S$\check{\text{a}}$l$\check{\text{a}}$gean derivatives or Gelfond-Leont'ev-Rusche\-weyh derivatives and the growth of the maximal term of these derivatives of Hadamard composition is established. Similar results are obtained in terms of the classical order and the lower order of the growth.

Author Biography

M.M. Sheremeta, Ivan Franko National University of Lviv, Lviv

Department of Mechanics and Mathematics, Professor

References

Gelfond A.O., Leont’ev A.F. On a generalisation of Fourier series// Matem. Sb. – 1951. – V.29, No3. – P. 477–500. (in Russian)
Sǎlǎgean G.St. Subclasses of univalent functions// Lecture Notes in Math. – 1983. – V.1013. – P. 362–372.
Ruscheweyh St. New criteria for univalent functions// Proc. Amer. Math. Soc. – 1975. – V.49. – P. 109–115.
Sheremeta M.M. On the maximal terms of successive Gelfond–Leont’ev–Sǎlǎgean and Gelfond–Leont’ev–Ruscheweyh derivatives of a function analytic in the unit disc// Mat. Stud. – 2012. – V.37, No1. – P.58–64.
Hadamard J. Theoreme sur le series entieres// Acta Math. – 1899. – Bd.22. – S. 55–63.
Hadamard J. La serie de Taylor et son prolongement analitique // Scientia phys.–math. – 1901. – V.12. – P. 43–62.
Bieberbach L. Analytische Fortzetzung. – Berlin, 1955.
Korobeinik Yu.F., Mavrodi N.N. Singular points of the Hadamard composition// Ukr. Math. Zhourn. – 1990. – V.42, No12. – P. 1711–1713. (in Russian)
Sen M.K. On some properties of an integral function f ∗ g// Riv. Math. Univ. Parma (2). – 1967. – V.8. – P. 317–328.
Sen M.K. On the maximum term of a class of integral functions and its derivatives// Ann. Pol. Math. – 1970. – V.22. – P. 291–298.
Luhova L.L., Mulyava O.M., Sheremeta M.M. Properties of composition of Hadamard for Gelfond–Leont’ev derivatives of analytic functions// Ufa Mathematical Journal. – 2010. – V.2, No2. – P. 90–101. (in Russian)
Sheremeta M.N. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion// Izv. Vyssh. Uchebn. Zaved. Mat. – 1967. – No2 – P. 100–108. (in Russian)
Sheremeta M.M. Entire Dirichlet series. – K.: ISDO. – 1993. (in Ukrainian)
Sheremeta M.M., Mulyava O.M. Hadamard compositions of Gelfond–Leont’ev derivatives of analytic functions// Ukr. Math. Bull. – 2020. – V.17, No2. – P. 234–255.
Hadamard J. Essai sur l’étude des fonctions données par leur développement de Taylor// J. Math. Pures et Appl. – 1892. – V.12. – P. 154–186.
Valiron G. Integral functions. – Toulouse, 1923. – 354 p.
Whittaker J.M. The lower order of integral functions// J. London Math. Soc. – 1933. – V.8. – P. 10–17.
Sheremeta M.M. On the connection between the growth of a function analytic in a disk and the moduli of coefficients their Taylor series// DAN USSR – 1966. – No6. – P. 729–731. (in Russian)
Gal’ Yu.M., Sheremeta M.M. On the growth of analytic fuctions in a half–plane given by Dirichlet series // DAN USSR, ser. A. – 1978. – No12. – P. 1964–1067. (in Russian)
Gal’ Yu.M. On the growth of analytic fuctions given by Dirichlet series absolute convergent in a half–plane. – Drohobych. – 1980. – 40 pp. – Manuscript deposited at VINITI, No 4080–80 Dep.(in Russian)
Sons L.S. Regularity of growth and gap // J. Math. Anal. Appl. – 1968. – V.24. – P. 296–306.
Fujivara M. On the relation between M (r) and the coefficients of a power series// Proc. Imp. Acad. Japan. – 1932. – V.8. – P. 220–223.
Published
2020-12-25
How to Cite
1.
Sheremeta M. Hadamard compositions of Gelfond-Leont’ev-Sǎlǎgean and Gelfond-Leont’ev-Ruscheweyh derivatives of functions analytic in the unit disk. Mat. Stud. [Internet]. 2020Dec.25 [cited 2021Dec.9];54(2):115-34. Available from: http://matstud.org.ua/ojs/index.php/matstud/article/view/159
Section
Articles