On the idempotent and nilpotent sum numbers of matrices over certain indecomposable rings and related concepts

  • P.V. Danchev
Keywords: idempotents; nilpotents; commutators; traces; matrices.

Abstract

We investigate a few special decompositions in arbitrary rings and matrix rings over indecomposable rings into nilpotent and idempotent elements. Moreover, we also define and study the nilpotent sum trace number of nilpotent matrices over an arbitrary ring. Some related notions are explored as well.

Author Biography

P.V. Danchev

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Sofia, Bulgaria

References

S. Breaz, G. Calugareanu, Sums of nilpotent matrices, Lin. & Multilin. Algebra, 65 (2017), 67–78.

S. Breaz, G. Calugareanu, P. Danchev, T. Micu, Nil-clean matrix rings, Linear Algebra & Appl., 439 (2013), №10, 3115–3119.

P.V. Danchev, Feebly invo-clean unital rings, Ann. Univ. Sci. Budapest (Sect. Math.), 60 (2017), 85–91.

P.V. Danchev, Feebly nil-clean unital rings, Proc. Jangjeon Math. Soc., 21 (2018), №1, 155–165.

P.V. Danchev, Rings whose elements are represented by at most three commuting idempotents, Gulf J. Math., 6 (2018), №2, 1–6.

P.V. Danchev, Rings whose elements are sums of three or minus sums of two commuting idempotents, Alban. J. Math., 12 (2018), №1, 3–7.

P.V. Danchev, Rings whose elements are sums or minus sums of three commuting idempotents, Mat. Stud., 49 (2018), №2, 138–143.

P.V. Danchev, Rings whose elements are sums of three or differences of two commuting idempotents, Bull. Iran. Math. Soc., 44 (2018), №6, 1641–1651.

P.V. Danchev, Weakly exchange rings whose units are sums of two idempotents, Vestnik of St. Petersburg Univ., Ser. Math., Mech. & Astr., 6(64) (2019), №2, 265–269.

P.V. Danchev, Rings whose elements are sums or minus sums of two commuting idempotents, Boll. Un. Mat. Ital., 12 (2019), №3, 357–362.

P.V. Danchev, Rings whose elements are linear combinations of three commuting idempotents, Lobachevskii J. Math., 40 (2019), №1, 36–41.

P.V. Danchev, Rings whose elements are linear expressions of three commuting idempotents, Trans. A. Razmadze Math. Inst., 173 (2019), №1, 11–16.

P.V. Danchev, Rings whose elements are sums of four commuting idempotents, Honam Math. J., 41 (2019), №2, 321–328.

P.V. Danchev, On a property of nilpotent matrices over an algebraically closed field, Chebyshevskii Sbornik, 20 (2019), №3, 400–403.

P.V. Danchev, Representing matrices over fields as square-zero matrices and diagonal matrices, Chebyshevskii Sbornik, 21 (2020), №3, 84–88.

P.V. Danchev, Certain properties of square matrices over fields with applications to rings, Rev. Colomb. Mat., 54 (2020), №2, 109–116.

P. Danchev, E. Garc´ia, M.G. Lozano, Decompositions of matrices into diagonalizable and square-zero matrices, Lin. & Multilin. Algebra, to appear (2021).

P. Danchev, E. Garc´ia, M.G. Lozano, Decompositions of matrices into potent and square-zero matrices, submitted.

P. Danche, E. Nasibi, The idempotent sum number and n-thin unital rings, Ann. Univ. Sci. Budapest (Sect. Math.), 59 (2016), 85–98.

B. Harris, Commutators in division rings, Proc. Amer. Math. Soc., 9 (1958), №4, 628–630.

R.E. Hartwig, M.S. Putcha, When is a matrix a difference of two idempotents, Lin. & Multilin. Algebra, 26 (1990), №4, 267–277.

Y. Hirano, H. Tominaga, Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc., 37 (1988), 161–164.

T.-Y. Lam, A first course in noncommutative rings, Second Edition, Graduate Texts in Math., V.131, Springer-Verlag, Berlin-Heidelberg-New York, 2001.

K. O’Meara, Nilpotents often the difference of two idempotents, draft privately circulated on March 2018.

C.S. Pazzis, On decomposing any matrix as a linear combination of three idempotents, Lin. Algebra & Appl., 433 (2010), №4, 843–855.

C.S. Pazzis, On sums of idempotent matrices over a field of positive characteristic, Lin. Algebra & Appl., 433 (2010), №4, 856–866.

R. Slowik, Expressing infinite matrices as sums of idempotents, Ukr. Math. J., 69 (2018), 1333–1340.

J. Ster, On expressing matrices over $Z_2$ as the sum of an idempotent and a nilpotent, Lin. Algebra & Appl., 544 (2018), 339–349.

G. Tang, Y. Zhou, H. Su, Matrices over a commutative ring as sums of three idempotents or three involutions, Lin. & Multilin. Algebra, 67 (2019), №2, 267–277.

Published
2021-03-04
How to Cite
1.
Danchev P. On the idempotent and nilpotent sum numbers of matrices over certain indecomposable rings and related concepts. Mat. Stud. [Internet]. 2021Mar.4 [cited 2021Oct.16];55(1):24-2. Available from: http://matstud.org.ua/ojs/index.php/matstud/article/view/123
Section
Articles