Asymptotics of $\delta$-subharmonic functions of finite order
Abstract
For $\delta$-subharmonic in $\mathbb{R}^m$, $m\geq2$, function $u=u_1-u_2$ of finite positive
order we found the asymptotical representation of the form
\[
u(x)=-I(x,u_1)+I(x,u_2) +O\left(V(|x|)\right),\ x\to\infty,
\]
where $I(x,u_i)=\int\limits_{|a-x|\leq|x|}K(x,a)d\mu_i(a)$, $K(x,a)=\ln\frac{|x|}{|x-a|}$ for $m=2$,
$K(x,a)=|x-a|^{2-m}-|x|^{2-m}$ for $m\geq3,$
$\mu_i$ is a Riesz measure of the subharmonic function $u_i,$ $V(r)=r^{\rho(r)},$ $\rho(r)$ is a proximate order of $u$.
The obtained result generalizes one theorem of I.F. Krasichkov for entire functions.
References
V.S. Azarin, Subharmonic functions of completely regular growth, Ph.D., Kharkiv, 1963. (in Russian)
M. Brelot, Étude des fonctions sous-harmoniques au voisinage d’un point singulier, Ann. Inst. Fourier,(1949), 121-156. doi:10.5802/aif.11
A.A. Goldberg, N.V. Zabolotskii, Concentration index of a subharmonic function of zero order, Mat. Zametki, 34 (1983), No2, 227–236. (in Russian)
W.K. Hayman, P.B. Kennedy, Subharmonic Functions, Mir, Moscow, 1980. (in Russian)
T.A. Kolomiitseva, On the asymptotic behavior of an entire function with regular distribution of roots, Teor. Funkts., Funktsional. Anal. Prilozh., 15 (1972), 35–43. (in Russian)
I.F. Krasichkov, Lower bounds for entire functions of finite order, Sibirsk. Mat. Zh., 6 (1965), No4, 840–861. (in Russian)
B.Ya. Levin, Distribution of Zeros of Entire Functions, Gostekhizdat., Moscow, 1956. (in Russian)
Copyright (c) 2020 Mykola Zabolotskyi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.