Induced mappings on $C_n(X)/{C_n}_K(X)$
Abstract
Given a continuum $X$ and $n\in\mathbb{N}$. Let $C_n(X)$ be the hyperspace of all nonempty closed subsets of $X$ with at most $n$ components. Let ${C_n}_K(X)$ be the hyperspace of all elements in $C_n(X)$ containing $K$ where $K$ is a compact subset of $X$. $C^n_K(X)$ denotes the quotient space $C_n(X)/{C_n}_K(X)$. Given a mapping $f:X\to Y$ between continua, let $C_n(f):C_n(X)\to C_n(Y)$ be the induced mapping by $f$, defined by $C_n(f)(A)=f(A)$. We denote the natural induced mapping between $C^n_K(X)$ and $C^n_{f(K)}(Y)$ by $C^n_K(f)$. In this paper, we study relationships among the mappings $f$, $C_n(f)$ and $C^n_K(f)$ for the following classes of mappings: almost monotone, atriodic, confluent, joining, light, monotone, open, OM, pseudo-confluent, quasi-monotone, semi-confluent, strongly freely decomposable, weakly confluent, and weakly monotone.
References
J.G. Anaya, F. Capul´ın, M.A. Lara, F. Orozco-Zitli, Induced mappings between quotient spaces of n-fold hyperspaces of continua, Glas. Mat., III. Ser., 51 (2016), №2, 475–490. doi:10.3336/gm.51.2.13
J.G. Anaya, E. Casta˜neda-Alvarado, J.A. Mart´ınez-Cortez, On the hyperspace Cn(X)/CnK(X), accepted for publication in Comment. Math. Univ. Carolin.
F. Barrag´an, Induced maps on n-fold symmetric product suspensions, Topology Appl., 158 (2011), №10, 1192–1205. doi.org/10.1016/j.topol.2011.04.006
F. Barrag´an, S. Mac´ıas, J.F. Tenorio, More on induced maps on n-fold symmetric product suspensions Glas. Mat., III. Ser., 50 (2015), №2, 489–512. doi:10.3336/gm.50.2.15
J. Camargo, Openness of the induced map Cn(f), Bol. Mat. (N.S.), 16 (2009), №2, 115–123. https://revistas.unal.edu.co/index.php/bolma/article/view/40781
J. Camargo, Some relationships between induced mappings, Topology Appl., 157 (2010), №13, 2038–2047. doi.org/10.1016/j.topol.2010.04.014
J. Camargo, S. Mac´ıas, On freely decomposable maps, Topology Appl., 159 (2012), №3, 891–899. doi.org/10.1016/j.topol.2011.12.006
J. Camargo, S. Mac´ıas, On strongly freely decomposable and induced maps, Glas. Mat., III. Ser., 48 (2013), №2, 429–442. doi:10.3336/gm.48.2.14
J. Camargo, S. Mac´ıas, Quotients of n-fold hyperspaces, Topology Appl., 197 (2016) 154–166. doi.org/10.1016/j.topol.2015.10.001
E. Casta˜neda-Alvarado, F. Oozco-Zitli, J. S´anchez-Mart´ınez, Induced mappings between quotient spaces of symmetric products of continua, Topology Appl., 163 (2014), 66–76. doi.10.1016/j.topol.2013.10.007
J.J. Charatonik, W.J. Charatonik, Lightness of induced mappings, Tsukuba J. Math., 22 (1998), №1, 179–192. doi:10.21099/tkbjm/1496163479
J.J. Charatonik, A. Illanes, S. Mac´ıas, Induced mappings on the hyperspaces Cn(X) of a continuum X, Houston J. Math., 28 (2002), №4, 781–805.
J. Dugundji, Topology, ser. Allyn and Bacon series in advanced mathematics. Allyn and Bacon, 1966. https://books.google.com.mx/books?id=FgFRAAAAMAAJ
R. Escobedo, Ma. de J. L´opez, S. Mac´ıas, On the hyperspace suspension of a continuum, Topology Appl., 138 (2004), 109–124. doi.org/10.1016/j.topol.2003.08.024
R. Hern´andez-Guti´errez, V. Mart´ınez de la Vega, Rigidity of symmetric products, Topology Appl., 160 (2013), №13, 1577–1587. doi.org/10.1016/j.topol.2013.06.001
H. Hosokawa, Induced mappings on hyperspaces, Tsukuba J. Math., 21 (1997), №1, 239–259. doi:10.21099/tkbjm/1496163175
H. Hosokawa, Induced mappings on hyperspaces II, Tsukuba J. Math., 21 (1997), №3, 773–783. doi:10.21099/tkbjm/1496163380
A. Illanes, The hyperspace C2(X) for a finite graph X is unique, Glas. Mat., III. Ser., 37 (2002), №2, 347–363. https://web.math.pmf.unizg.hr/glasnik/vol_37/no2_11.html
A. Illanes, A model for the hyperspace C2(S1), Quest. Answers Gen. Topology, 22 (2004), №2, 117–130.
A. Illanes, S.B. Nadler Jr., Hyperspaces: fundamentals and recent advances, ser. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1999. https://books.google.com.mx/books?id=TWo2h710HysC
J.C. Mac´ıas, On the n-fold pseudo-hyperspace suspension of continua, Glas. Mat., III. Ser., 43 (2008), №2, 439–449. doi:10.3336/gm.43.2.14
S. Mac´ıas, On the hyperspaces Cn(X) of a continuum X, II, Topology Proc., 25 (2000), 255–276. http://topology.nipissingu.ca/tp/reprints/v25/tp25118.pdf
S. Mac´ıas, On the hyperspaces Cn(X) of a continuum X, Topology Appl., 109 (2001), 237–256. doi.org/10.1016/S0166-8641(99)00151-0
S. Mac´ıas, On the n-fold hyperspace suspension of continua, Topology Appl., 138 (2004), №1–3, 125–138.
doi.org/10.1016/j.topol.2003.08.023
S. Mac´ıas, On the n-fold hyperspace suspension of continua. II, Glas. Mat., III. Ser., 41 (2006), №2, 335–343. doi.org/10.3336/gm.41.2.16
T. Ma´ckowiak, Continuous mappings on continua, Dissertationes Math. (RozprawyMat.), V.158, 1979.
S.B. Nadler Jr., Hyperspaces of Sets. A text with research questions, ser. Monographs and Textbooks in Pure and Applied Mathematics. Dekker, 1978.
https://books.google.com.mx/books?id=XTIOPQAACAAJ
S.B. Nadler Jr., A fixed point theorem for hyperspace suspensions, Houston J. Math., 5 (1979), 125–132.
S.B. Nadler Jr., Continuum Theory, An introduction, ser. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1992. https://books.google.com.mx/books?id=QPVrKhv36ZAC
E.Sevost’yanov, On a Poletskii-type inequality for mappings of the Riemannian surfaces, Ukr. Math. J., 72 (2020), №5, 816–835.
Copyright (c) 2021 E. Castañeda-Alvarado, J. G. Anaya, J. A. Martínez-Cortez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.