On Rough maximal inequalities: an extension of Fefferman–Stein results

Author
D. Salim1, W. S. Budhi2, Y. Soeharyadi3
Analysis and Geometry Research Division, Bandung Institute of Technology, Indonesia
Abstract
We prove some vector-valued inequalities for a rough maximal operator on Lebesgue spaces. These results are an extension of Fefferman--Stein (1971) and Sawano (2006) since the rough maximal operator is a generalization of the Hardy--Littlewood maximal operator and also a fractional maximal operator, respectively. We also establish some vector-valued inequalities for a rough maximal operator on Morrey spaces.
Keywords
Rough maximal operator; vector-valued inequality; Fefferman–Stein maximal inequality; Morrey space
DOI
doi:10.30970/ms.52.2.185-194
Reference
1. Chanillo S., Watson D., Wheeden R., Some integral and maximal operators related to starlike sets, Studia Math., 3 (1993), ¹107, 223-255.

2. Chiarenza F., Frasca M., Morrey spaces and Hardy.Littlewood maximal function, Rend. Mat., 7 (1987), 273-279.

3. Ding Y., Lai X., Weak type (1,1) behavior for the maximal operator with $L^1$-Dini kernel, Potential Anal., 47 (2017), ¹2, 169-187.

4. Duoandikoetxea J., Fourier analysis. American Mathematical Soc V.29, 2001.

5. Fefferman C., Stein E.M., Some maximal inequalities, Am. J. Math., 93 (1971), ¹1, 107-115.

6. Grafakos L., Classical fourier analysis, V.2, Springer, New York, 2008.

7. Guliyev, Vagif S., Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N. Y.), 193 (2013), ¹2, 211-227.

8. Iida T., Weighted inequalities on Morrey spaces for linear and multilinear fractional integrals with homogeneous kernels, Taiwan J. Math., 18 (2014), ¹1, 147-185.

9. Morrey C.B., Functions of several variables and absolute continuity, Duke Math. J., 6 (1940), ¹1, 187-215.

10. Muckenhoupt B., Wheeden R.L., Weighted norm inequalities for singular and fractional integrals, T. Am. Math. Soc., 161 (1971), 249-258.

11. Salim D., Soeharyadi Y., Budhi W.S., Rough fractional integral operators and beyond Adams inequalities, Math. Inequal. Appl., 22 (2019), ¹2, 747-760.

12. Sawano Y., .q-valued extension of the fractional maximal operators for non-doubling measures via potential operators, Int. J. Pure Appl. Math., 26 (2006), ¹4, 505-522.

13. Stein E.M., Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, V.43, Princenton, University Press, Princeton, NJ, 1993.

Pages
185-194
Volume
52
Issue
2
Year
2019
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue