The Cauchy problem with impulse action and degeneration for parabolic equations 

Author 
bohdanjaschan94@gmail.com^{2}
Yuriy Fedkovych Chernivtsi National University
Chernivtsi, Ukraine

Abstract 
We study the Cauchy problem for the secondorder linear parabolic equations with impulse
conditions in the time variable and power singularity in the coefficients of any order with
respect to the time and space variables. By using the maximum principle and apriori estimates
we establish the existence and uniqueness of solution of the problem in Holder spaces with
power weight.

Keywords 
degeneration; impulse action; apriori estimation; boundary condition

DOI 
doi:10.30970/ms.52.1.6370

Reference 
1. Perestyuk N.A., Plotnikov N.A., Samoilenko A.M., Skripnik N.V., Differential Equations with Impulse
Effects, Berlin: Multivalued Righthand Sides with Discontinuities – Walter de Gruyter Co, 2011. –
408 p.
2. Samoilenko A.M., Perestyuk N.A. Impulsive Differential Equations. – Singapore: World Scientific, 1995. – 462 p. 3. Boinov D.D., Simeonov P.S. Systems with impulse effects: Stability theory and applications. – New York etc.: John Wiley&Sons, 1989. – 225 p. 4. Perestyk N.A., Tkach A.B. Periodic solutions of a weakly linear system of partial differential equations with impulse action// Ukr. Mat. Zh. – 1997. – ¹4.(49) – P. 601–605. 5. Asanova A.T. On a nonlocal boundary value problem for systems of hyperbolic equations with impulse actions// Ukr. Mat. Zh. – 2013. – ¹3.(65) – P. 315–328. 6. Pykal’skii I.D., Isaryuk I.M. The boundaryvalue problem with impulse conditions and degenerations for parabolic equations// Ukr. Mat. Zh. – 2015. – ¹10.(67) – P. 1399–1408. 7. Pykal’skii I.D. The boundary value problem for parabolic equations with impulse conditions and degenerations// Ìàthåmàtical måthîds and physicoìåchanical fields – 2015. – ¹2.(58) – P. 55–63. 8. Isaryuk I.M., Pukalskyi I.D. The boundary value problems for parabolic equations with a nonlocal condition and degenerations// Journal of Mathematical Sciences. – 2015. – ¹1.(207) – P. 26–38. 9. Pukalskyi I.D. Isaryuk I.M. Nonlocal parabolic boundary value problems with singularities// Journal of Mathematical Sciences. – 2015. – ¹3.(208) – P. 327–343. 10. Friedman A. Partial differential equations of parabolic type. – M.: World, 1968. – 427p. 11. Ladyzhenskaya O. A., Solonnikov V. A., Ural’tseva N. N. Linear and quasilinear equations of parabolic type. – Ì.: Science, 1967. – 736p. 12. Pukalskyi I.D. The boundary value problems for unevenly parabolic and elliptic equations with degeneration and singularities. – Chernivtsi: Ruta, 2008. – 253p. 
Pages 
6370

Volume 
52

Issue 
1

Year 
2019

Journal 
Matematychni Studii

Full text of paper  
Table of content of issue 