Distance between a maximum modulus point and the zero set of an analytic function |
|
Author |
napets.fed@gmail.com1, p.v.filevych@gmail.com2
1) Department of Applied Mathematics and Statistics
Ukrainian Catholic University, Lviv, Ukraine; 2) Department of Computational Mathematics and Programming
Lviv Polytechnic National University, Lviv, Ukraine
|
Abstract |
Let f be an analytic function in the disk DR={z∈C:|z|≤R}, R∈(0,+∞].
A point w∈DR is called a maximum modulus point of f if |f(w)|=M(|w|,f), where M(r,f)=max.
Denote by d(w, f) the distance between a maximum modulus point w and the zero set of f, i.e., d(w,f)=\inf\{|w-z|\colon f(z)=0\}.
Let \Phi be a continuous function on [a,\ln R) such that x\sigma-\Phi(\sigma)\to-\infty, \sigma\uparrow \ln R, for every x\in\mathbb{R}. Let also \widetilde{\Phi} be the Young-conjugate function of \Phi and \overline{\Phi}(x)=\widetilde{\Phi}(x)/x
for all sufficiently large x.
We prove that if
\ln M(r,f)\le (1+o(1))\Phi(\ln r),\quad r\uparrow R,
then
\varliminf_{|w|\uparrow R}d(w,f)\frac{\overline{\Phi}\,^{-1}(\ln |w|)}{|w|}\ge C_0,
where C_0=0,5416\dots. When the Taylor coefficients of f are nonnegative, the constant C_0 can be replaced by \pi, and the inequality obtained in this case is sharp.
|
Keywords |
analytic function; maximum modulus; maximum modulus point; zero set
|
DOI |
doi:10.30970/ms.52.1.10-23
|
Reference |
1. I.V. Ostrovskii, Distance between a maximum modulus point of an entire function and its zero set,
Operator theory, subharmonic functions, Kyiv: Naukova Dumka, 1991, 67-75. (in Russian)
2. I. Ostrovskii, A.E. Ureyen, Distance between a maximum modulus point and zero set of an entire function, Complex Variables, Theory Appl., 48 (2003), №7, 583-598. 3. I. Ostrovskii, A.E. Ureyen, Maximum modulus points and zero sets of entire functions of regular growth, C. R. Acad. Sci. Paris. Ser. I., 341 (2005), №8, 481-484. 4. I. Ostrovskii, A.E. Ureyen, On maximum modulus points and zero sets of entire functions of regular growth, Rocky Mt. J. Math., 38 (2008), №2, 583-618. 5. A.E. Ureyen, On maximum modulus points and the zero set for an entire function of either zero or infinite order, Comput. Methods Funct. Theory, 4 (2005), №2, 341-354. 6. S.I. Fedynyak, On maximum modulus points and zero set for an entire function, Mat. Stud., 30 (2008), №2, 169-172. 7. M.A. Evgrafov, Asymptotic estimates and entire functions, Moscow: Nauka, 1979. (in Russian) 8. T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), №2, 172–187. 9. P.V. Filevych, On the slow growth of power series convergent in the unit disk, Mat. Stud., 16 (2001), №2, 217–221. |
Pages |
10-23
|
Volume |
52
|
Issue |
1
|
Year |
2019
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |