Locally univalence of Dirichlet series satisfying a linear differential equation of second order with exponential coefficients

Author
M. M. Sheremeta
Ivan Franko National University of Lviv, Lviv, Ukraine
Abstract
Let $h>0$, $\gamma_0\not=0$, $\gamma_1\not=0$, $\gamma_2\le -1$ and $|\gamma_1|/4+|\gamma_0|/6\le h/5$. It is well-proven that the differential equation $w''+(\gamma_0 e^{2hs}+\gamma_1 e^{hs}+\gamma_2) w=0$ has an entire solution $F(s)=\exp\{s\lambda_1\}+\sum\nolimits_{k=2}^{\infty}f_k\exp\{s\lambda_k\}$ locally univalent in the half-plane $\{s\colon \,\text{Re}\,s\le 0\}$ and such that $\ln\,M(\sigma,F)\sim(\sqrt{|\gamma_0|}/h)e^{h\sigma}$ as $\sigma\to+\infty$, where $M(\sigma,F)=\sup\{|F(\sigma+it)|\colon t\in\mathbb{R}\}$.
Keywords
Dirichlet series; locally univalence; linear differencial equation of second order
DOI
doi:10.15330/ms.51.2.152-158
Reference
1. G.M. Golusin, Geometrical theory of functions of complex variable, M.: Nauka, 1966, 628 p. (in Russian), Engl. transl.: AMS: Translations of Mathematical monograph, 26 (1969), 676 p.

2. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), ¹2, 169–185.

3. S.M. Shah, Univalence of a function f and its successive derivatives when f satisfies a differential equation, II. J. Math. anal. and appl., 142 (1989), 422–430.

4. P. Montel, Sur les fonctions localement univalentes ou multivalentes, Ann. Sci. Ecole Norm. Sup. (3), 54 (1937), 39–54.

5. M.S. Robertson, Schlicht Dirichlet series, Canad. J. Math., 10 (1958), 161–176.

6. M.N. Sheremeta, On the derivative of an entire Dirichlet series, Mat. sb., 137 (1988), ¹1, 128–139 (in Russian); Engl. transl.: Math. USSR Sbornik, 65 (1990), ¹1, 133–145.

7. A.F. Leont’ev, Series of exponents, M.: Nauka., 1976, 536 p. (in Russian)

8. M.N. Sheremeta, Full equivalence of the logarithms of the maximum modulus and the maximal term of an entire Dirichlet series, Mat. Zametki, 47 (1990), ¹6, 119–123 (in Russian); Engl. transl.: Math. Notes, 47 (1990), ¹6, 119–123.

9. M.N. Sheremeta, On the correlations between the maximal term and the maximum modulus of an entire Dirichlet series, Mat. Zametki, 51 (1992), ¹5, 141–148 (in Russian); Engl. transl.: Math. Notes, 51 (1992), ¹5, 141–148.

Pages
152-158
Volume
51
Issue
2
Year
2019
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue