Weak solutions to the complex Monge-Ampere equation on open subsets of $\mathbb{C}^n$ |
|
Author |
vuquanhau.edu@gmail.com1, mauhai@fpt.vn2
1) Hanoi Architectural University, Hanoi, Viet Nam; 2) Department of Mathematics, Hanoi National University of Education
Xuan Thuy Street, Cau Giay, Hanoi, Viet Nam
|
Abstract |
In the paper, we prove the existence of weak solutions to the complex Monge-Ampere equation in the class $\mathcal{D}(\Omega)$ on an open subset $\Omega$ of $\mathbb C^n$.
|
Keywords |
Monge-Ampere equation; weak solution; plurisubharmonic function; hyperconvex domain
|
DOI |
doi:10.15330/ms.51.2.143-151
|
Reference |
1. P. Ahag, U. Cegrell, R. Czyz, P.H. Hiep, Monge-Ampere measures on pluripolar sets, J. Math. Pures
Appl., 92 (2009), 613-627.
2. P. Ahag, R. Czyz, Kolodziej's subsolution theorem for unbounded pseudoconvex domains, Universitatis Iagellonicae Acta Mathematica, 50 (2012), 7-23. 3. E. Bedford, B.A. Taylor, The Dirichlet problem for a complex Monge-Ampere operator, Invent. Math., 37 (1976), 1-44. 4. E. Bedford, B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-41. 5. Z. Blocki, On the definition of the Monge-Ampere operator in C2, Math. Ann., 328 (2004), 415-423. 6. Z. Blocki, The domain of definition of the complex Monge-Ampere operator, Amer. J. Math., 128 (2006), 519-530. 7. Z. Blocki, A note on maximal plurisubharmonic functions, Uzbek. Math. J., 1 (2009), 28-32. 8. U. Cegrell, Pluricomplex energy, Acta Math., 180 (1998), 187-217. 9. U. Cegrell, The general definition of the complex Monge-Ampere operator, Ann. Inst. Fourier., 54 (2004), 159-179. 10. U. Cegrell, A general Dirichlet problem for the complex Monge-Ampere operator, Ann. Polon. Math., 94 (2008), 131-147. 11. U. Cegrell, Convergence in capacity, Canad. Math. Bull., 55 (2012), 242-248. 12. L.M. Hai, N.V. Khue, P.H. Hiep, The complex Monge-Ampere operator on bounded domains in $\mathbb{C}^n$, Result. Math., 54 (2009), 309-328. 13. L.M. Hai, N.V. Trao, N.X. Hong, The complex Monge-Ampere equation in unbounded hyperconvex domains in Cn, Complex Variables and Elliptic Equations, 59 (2014), ¹12, 1758-1774. 14. L.M. Hai, T.V. Thuy, N.X. Hong, A note on maximal subextensions of plurisubharmonic functions, Acta Math Vietnam, 43 (2018), 137-146. 15. N.X. Hong, Monge-Ampere measures of maximal subextensions of plurisubharmonic functions with given boundary values, Complex Var. Elliptic Equ., 60 (2015), ¹3, 429-435. 16. N.X. Hong, N.V. Trao, T.V. Thuy, Convergence in capacity of plurisubharmonic function functions with given boundary values, Inter. J. Math, 28, ¹3, (2017) 14 p. 17. P.H. Hiep, Pluripolar sets and the subextension in Cegrell's classes, Complex Var. Elliptic Equ., 53 (2008), ¹7, 675-684. 18. N.V. Khue, P.H. Hiep, A comparison principle for the complex Monge-Ampere operator in Cegrell's classes and applications, Trans. Am. Math. Soc., 361 (2009), 5539-5554. 19. M. Klimek, Pluripotential Theory, The Clarendon Press Oxford University Press, New York, 1991, Oxford Science Publications. 20. S. Ko lodziej, The range of the complex Monge-Ampere operator, II, Indiana U. Math. J., 44 (1995), 765-782. 21. Y.T. Siu, Extension of meromorphic maps into K¡§ahler manifolds, Ann. of Math., 102 (1975), ¹2, 421-462. |
Pages |
143-151
|
Volume |
51
|
Issue |
2
|
Year |
2019
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |