Linear expand-contract plasticity of ellipsoids in separable Hilbert spaces

Author
O. O. Zavarzina
School of Mathematics and Informatics, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Abstract
The paper is aimed to establish the interdependence between linear expand-contract plasticity of an ellipsoid in a separable Hilbert spaces and properties of the set of its semi-axes.
Keywords
non-expansive map; ellipsoid; linearly expand-contract plastic space
DOI
doi:10.15330/ms.51.1.86-91
Reference
1. C. Angosto, V. Kadets, O. Zavarzina, Non-expansive bijections, uniformities and polyhedral faces, J. Math. Anal. Appl., 471 (2019), ¹1-2, 38-52.

2. B. Cascales, V. Kadets, J. Orihuela, E.J. Wingler, Plasticity of the unit ball of a strictly convex Banach space, Revista de la Real Academia de Ciencias Exactas, F.sicas y Naturales. Serie A. Matematicas, 110 (2016), ¹2, 723-727.

3. H. Freudenthal, W. Hurewicz, Dehnungen, Verkurzungen, Isometrien, Fund. Math., 26 (1936), 120-122.

4. V. Kadets, O. Zavarzina, Plasticity of the unit ball of .1, Visn. Hark. nac. univ. im. V.N. Karazina, Ser.: Mat. prikl. mat. meh., 83 (2017), 4-9.

5. V. Kadets, A course in Functional Analysis and Measure Theory, Springer, 2018.

6. V. Kadets, O. Zavarzina, Non-expansive bijections to the unit ball of 1-sum of strictly convex Banach spaces, Bulletin of the Australian Mathematical Society, 97 (2018), ¹2, 285-292.

7. S.A. Naimpally, Z. Piotrowski, E.J. Wingler, Plasticity in metric spaces, J. Math. Anal. Appl., 313 (2006), 38-48.

8. O. Zavarzina, Non-expansive bijections between unit balls of Banach spaces, Annals of Functional Analysis, 9 (2018), ¹2, 271-281.

Pages
86-91
Volume
51
Issue
1
Year
2019
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue