Linear expand-contract plasticity of ellipsoids in separable Hilbert spaces |
|
Author |
olesia.zavarzina@yahoo.com
School of Mathematics and Informatics,
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
|
Abstract |
The paper is aimed to establish the interdependence between linear expand-contract plasticity
of an ellipsoid in a separable Hilbert spaces and properties of the set of its semi-axes.
|
Keywords |
non-expansive map; ellipsoid; linearly expand-contract plastic space
|
DOI |
doi:10.15330/ms.51.1.86-91
|
Reference |
1. C. Angosto, V. Kadets, O. Zavarzina, Non-expansive bijections, uniformities and polyhedral faces, J. Math.
Anal. Appl., 471 (2019), ¹1-2, 38-52.
2. B. Cascales, V. Kadets, J. Orihuela, E.J. Wingler, Plasticity of the unit ball of a strictly convex Banach space, Revista de la Real Academia de Ciencias Exactas, F.sicas y Naturales. Serie A. Matematicas, 110 (2016), ¹2, 723-727. 3. H. Freudenthal, W. Hurewicz, Dehnungen, Verkurzungen, Isometrien, Fund. Math., 26 (1936), 120-122. 4. V. Kadets, O. Zavarzina, Plasticity of the unit ball of .1, Visn. Hark. nac. univ. im. V.N. Karazina, Ser.: Mat. prikl. mat. meh., 83 (2017), 4-9. 5. V. Kadets, A course in Functional Analysis and Measure Theory, Springer, 2018. 6. V. Kadets, O. Zavarzina, Non-expansive bijections to the unit ball of 1-sum of strictly convex Banach spaces, Bulletin of the Australian Mathematical Society, 97 (2018), ¹2, 285-292. 7. S.A. Naimpally, Z. Piotrowski, E.J. Wingler, Plasticity in metric spaces, J. Math. Anal. Appl., 313 (2006), 38-48. 8. O. Zavarzina, Non-expansive bijections between unit balls of Banach spaces, Annals of Functional Analysis, 9 (2018), ¹2, 271-281. |
Pages |
86-91
|
Volume |
51
|
Issue |
1
|
Year |
2019
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |