An extremal problem for volume functionals |
|
Author |
ruslan.salimov1@gmail.com1, kban1988@gmail.com2
1) Institute of Mathematics of the NAS of Ukraine; 2) Institute of Mathematics of the NAS of Ukraine
|
Abstract |
We consider the class of ring Q-homeomorphisms with respect to
p-modulus in Rn with p>n, and obtain a lower bound for
the volume of images of a ball under such mappings. In particular, the following theorem is proved in the paper: Let D be a bounded domain in Rn,
n⩾ and let f\colon D \rightarrow \Bbb R^{n} be a ring
Q-homeomorphism with respect to p-modulus at a point x_0 \in D
with p>n, and the function Q satisfies the condition
q_{x_{0}}(t) \leqslant q_{0}\,t^{-\alpha},\, q_{0} \in
(0, \infty)\,,\, \alpha \in [0, \infty)
for a.e. t\in (0, d_0), d_0 = {\rm dist}(x_{0},
\partial D). Then for all r\in (0, d_0) the estimate
m(fB(x_0, r)) \geqslant
\Omega_n\,
\left(\frac{p-n}{\alpha+p-n}\right)^{\frac{n(p-1)}{p-n}}q_{0}^{\frac{n}{n-p}}
\, r^{\frac{n(\alpha+ p - n)}{p-n}}\,,
holds, where \Omega_n is the volume of the unit ball in \mathbb{R}^{n}.
In addition, in the paper it is
solved an extremal problem on minimizing the volume
functional of the image of a ball.
|
Keywords |
ring Q-homeomorphism; p-modulus of a family of curves; quasiconformal mapping; condenser;
p-capacity of a condenser; volume functional
|
DOI |
doi:10.15330/ms.50.1.36-43
|
Reference |
1. B.V. Bojarski, Homeomorphic solutions to Beltrami systems, Dokl. Akad. Nauk SSSR, 102 (1955),
661–664 (in Russian).
2. F.W. Gehring, E. Reich, Area distortion under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 388 (1966), 1–15. 3. K. Astala, Area distortion under quasiconformal mappings, Acta Math., 173 (1994), №1, 37–60, doi: 10.1007/BF02392568. 4. A. Eremenko, D. H. Hamilton, On the area distortion by quasiconformal mappings, Proc. Amer. Math. Soc., 123 (1995), 2793–2797, doi: 10.1090/S0002-9939-1995-1283548-8 5. M.A. Lavrentiev, The variational method in boundary-value problems for systems of equations of elliptic type, Moscow: Izd-vo AN SSSR, 1962 (in Russian). 6. B. Bojarski, V. Gutlyanskii, O. Martio, V. Ryazanov, Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, EMS Tracts in Mathematics, 19. Zurich, 2013, x+205 pp. 7. T.V. Lomako, R.R. Salimov, To the theory of extremal problems, Zb. Pr. Inst. Mat. NAN Ukr., 7 (2010), №2, 264–269 (in Russian). 8. R.R. Salimov Lower estimates of p-modulus and mappings of Sobolev’s class, Algebra i analiz, 26 (2014), №6, 143–171 (in Russian). Engl. transl.: St. Petersbg. Math. J., 26 (2015), №6, 965–984, doi: 10.1090%2Fspmj%2F1370 9. V.I. Kruglikov, Capacity of condensers and spatial mappings quasiconformal in the mean, Matem. sborn., 130 (1986), №2, 185–206 (in Russian). Engl. transl.: Math. USSR-Sbornik, 58 (1987), №1, 185–205, doi: 10.1070%2FSM1987v058n01ABEH003099 10. R.R. Salimov, Estimation of the measure of the image of the ball, Sibir. Matem. Zh., 53 (2012), №4, 920-930 (in Russian). Engl. transl.: Sib. Math. J. 53 (2012), №4, 739-747, doi: 10.1134/S0037446612040155 11. R.R. Salimov, B.A. Klishchuk, The extremal problem for the area of an image of a disc, Dopov. NANU, (2016), №10, 22-27 (in Russian). 12. B.A. Klishchuk, R.R. Salimov, Lower bounds for the area of the image of a circle, Ufa Math. J., 9 (2017), №2, 55-61, doi: 10.13108%2F2017-9-2-55 13. R.R. Salimov, B.A. Klishchuk, Extremal problem for the areas of the images of a disks, Zap. Nauchn. Sem. POMI, 456 (2017), 160-171 (in Russian). Enlg. transl.: J. Math. Sci. 234 (2018), №3, 373-380, doi: 10.1007/s10958-018-4015-6 14. O. Martio, S. Rickman, and J. Vaisala, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A1. Math., 448 (1969), 1-40. 15. V.A. Shlyk, The equality between p-capacity and p-modulus, Sibir. Matem. Zh., 34 (1993), №6, 1196.1200 (in Russian). Engl. transl.: Sib. Mat. J., 34 (1993), №6, 1196-1200, doi: 10.1007%2FBF00973485 16. S. Saks, Theory of the integral, G. E. Stechert & Co., New York (1937). 17. F.W. Gehring, Lipschitz mappings and the p-capacity of ring in n-space, Advances in the theory of Riemann surfaces (Proc. Conf. Stonybrook, N.Y., 1969), Ann. Math. Studies, 66 (1971), 175-193. |
Pages |
36-43
|
Volume |
50
|
Issue |
1
|
Year |
2018
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |