An extremal problem for volume functionals |
|
Author |
ruslan.salimov1@gmail.com1, kban1988@gmail.com2
1) Institute of Mathematics of the NAS of Ukraine; 2) Institute of Mathematics of the NAS of Ukraine
|
Abstract |
We consider the class of ring $Q$-homeomorphisms with respect to
p-modulus in $\Bbb R^{n}$ with $p > n$, and obtain a lower bound for
the volume of images of a ball under such mappings. In particular, the following theorem is proved in the paper: Let $D$ be a bounded domain in $\Bbb R^{n}$,
$n \geqslant 2$ and let $f\colon D \rightarrow \Bbb R^{n}$ be a ring
$Q$-homeomorphism with respect to $p$-modulus at a point $x_0 \in D$
with $p>n$, and the function $Q$ satisfies the condition
$ q_{x_{0}}(t) \leqslant q_{0}\,t^{-\alpha},\, q_{0} \in
(0, \infty)\,,\, \alpha \in [0, \infty)$
for a.e. $t\in (0, d_0)$, $d_0 = {\rm dist}(x_{0},
\partial D)$. Then for all $r\in (0, d_0)$ the estimate
$$
m(fB(x_0, r)) \geqslant
\Omega_n\,
\left(\frac{p-n}{\alpha+p-n}\right)^{\frac{n(p-1)}{p-n}}q_{0}^{\frac{n}{n-p}}
\, r^{\frac{n(\alpha+ p - n)}{p-n}}\,,
$$
holds, where $\Omega_n$ is the volume of the unit ball in $\mathbb{R}^{n}$.
In addition, in the paper it is
solved an extremal problem on minimizing the volume
functional of the image of a ball.
|
Keywords |
ring Q-homeomorphism; p-modulus of a family of curves; quasiconformal mapping; condenser;
p-capacity of a condenser; volume functional
|
DOI |
doi:10.15330/ms.50.1.36-43
|
Reference |
1. B.V. Bojarski, Homeomorphic solutions to Beltrami systems, Dokl. Akad. Nauk SSSR, 102 (1955),
661–664 (in Russian).
2. F.W. Gehring, E. Reich, Area distortion under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 388 (1966), 1–15. 3. K. Astala, Area distortion under quasiconformal mappings, Acta Math., 173 (1994), ¹1, 37–60, doi: 10.1007/BF02392568. 4. A. Eremenko, D. H. Hamilton, On the area distortion by quasiconformal mappings, Proc. Amer. Math. Soc., 123 (1995), 2793–2797, doi: 10.1090/S0002-9939-1995-1283548-8 5. M.A. Lavrentiev, The variational method in boundary-value problems for systems of equations of elliptic type, Moscow: Izd-vo AN SSSR, 1962 (in Russian). 6. B. Bojarski, V. Gutlyanskii, O. Martio, V. Ryazanov, Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, EMS Tracts in Mathematics, 19. Zurich, 2013, x+205 pp. 7. T.V. Lomako, R.R. Salimov, To the theory of extremal problems, Zb. Pr. Inst. Mat. NAN Ukr., 7 (2010), ¹2, 264–269 (in Russian). 8. R.R. Salimov Lower estimates of p-modulus and mappings of Sobolev’s class, Algebra i analiz, 26 (2014), ¹6, 143–171 (in Russian). Engl. transl.: St. Petersbg. Math. J., 26 (2015), ¹6, 965–984, doi: 10.1090%2Fspmj%2F1370 9. V.I. Kruglikov, Capacity of condensers and spatial mappings quasiconformal in the mean, Matem. sborn., 130 (1986), ¹2, 185–206 (in Russian). Engl. transl.: Math. USSR-Sbornik, 58 (1987), ¹1, 185–205, doi: 10.1070%2FSM1987v058n01ABEH003099 10. R.R. Salimov, Estimation of the measure of the image of the ball, Sibir. Matem. Zh., 53 (2012), ¹4, 920-930 (in Russian). Engl. transl.: Sib. Math. J. 53 (2012), ¹4, 739-747, doi: 10.1134/S0037446612040155 11. R.R. Salimov, B.A. Klishchuk, The extremal problem for the area of an image of a disc, Dopov. NANU, (2016), ¹10, 22-27 (in Russian). 12. B.A. Klishchuk, R.R. Salimov, Lower bounds for the area of the image of a circle, Ufa Math. J., 9 (2017), ¹2, 55-61, doi: 10.13108%2F2017-9-2-55 13. R.R. Salimov, B.A. Klishchuk, Extremal problem for the areas of the images of a disks, Zap. Nauchn. Sem. POMI, 456 (2017), 160-171 (in Russian). Enlg. transl.: J. Math. Sci. 234 (2018), ¹3, 373-380, doi: 10.1007/s10958-018-4015-6 14. O. Martio, S. Rickman, and J. Vaisala, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A1. Math., 448 (1969), 1-40. 15. V.A. Shlyk, The equality between p-capacity and p-modulus, Sibir. Matem. Zh., 34 (1993), ¹6, 1196.1200 (in Russian). Engl. transl.: Sib. Mat. J., 34 (1993), ¹6, 1196-1200, doi: 10.1007%2FBF00973485 16. S. Saks, Theory of the integral, G. E. Stechert & Co., New York (1937). 17. F.W. Gehring, Lipschitz mappings and the p-capacity of ring in n-space, Advances in the theory of Riemann surfaces (Proc. Conf. Stonybrook, N.Y., 1969), Ann. Math. Studies, 66 (1971), 175-193. |
Pages |
36-43
|
Volume |
50
|
Issue |
1
|
Year |
2018
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |