Leibniz's well-founded fictions and their interpretations |
|
Author | |
Abstract |
Leibniz used the term fiction in conjunction with infinitesimals. What kind of fictions they
were exactly is a subject of scholarly dispute. The position of Bos and Mancosu contrasts
with that of Ishiguro and Arthur. Leibniz's own views, expressed in his published articles
and correspondence, led Bos to distinguish between two methods in Leibniz's work: (A) one
exploiting classical `exhaustion' arguments, and (B) one exploiting inassignable infinitesimals
together with a law of continuity.
Of particular interest is evidence stemming from Leibniz's work Nouveaux Essais sur l'En-
tendement Humain as well as from his correspondence with Arnauld, Bignon, Dagincourt, Des
Bosses, and Varignon. A careful examination of the evidence leads us to the opposite conclusion
from Arthur's.
We analyze a hitherto unnoticed objection of Rolle's concerning the lack of justification for
extending axioms and operations in geometry and analysis from the ordinary domain to that
of infinitesimal calculus, and reactions to it by Saurin and Leibniz.
A newly released 1705 manuscript by Leibniz (Puisque des personnes. . . ) currently in the
process of digitalisation, sheds light on the nature of Leibnizian inassignable infinitesimals.
In a pair of 1695 texts Leibniz made it clear that his incomparable magnitudes violate
Euclid's Definition V.4, a.k.a. the Archimedean property, corroborating the non-Archimedean
construal of the Leibnizian calculus.
|
Keywords |
Archimedean property; assignable vs inassignable quantity; Euclid's Definition V.4; infinitesimal;
law of continuity; law of homogeneity; logical fiction; Nouveaux Essais; pure fiction; quantifier-assisted
paraphrase; syncategorematic; transfer principle
|
DOI |
doi:10.15330/ms.49.2.186-224
|
Reference |
1. A. Alexander, Infinitesimal - how a dangerous mathematical theory shaped the modern world, Scientific
American/Farrar, Straus and Giroux, New York, 2015.
2. A. Alexander, On indivisibles and infinitesimals: a response to David Sherry, “The Jesuits and the method of indivisibles” Foundations of Science, 23 (2018), ¹2, 393-398. 3. R. Ariew, J. Cottingham, T. Sorell, (ed. and trans.) Descartes' Meditations: Background Source Materials. Cambridge: Cambridge Univ. Press, 1998. 4. R. Arthur, Leibniz's syncategorematic infinitesimals, Arch. Hist. Exact Sci., 67 (2013), ¹5, 553-593. 5. R. Arthur, Leibniz, Classic Thinkers, Polity Press, 2014. 6. R. Arthur, Leibniz's actual infinite in relation to his analysis of matter, In G. W. Leibniz, interrelations between mathematics and philosophy, Archimedes, 41, Springer, Dordrecht, 2015, 137-156. 7. R. Arthur, Leibniz's Syncategorematic Actual Infinite, Infinity in Early Modern Philosophy, Ohad Nachtomy and Reed Winegar (Eds.), The New Synthese Historical Library, Texts and Studies in the History of Philosophy, Springer, 76 (2018), 155-179. 8. R. Arthur, 'x + dx = x': Leibniz's Archimedean infinitesimals, Structure and Identity, ed. Karin Verelst, Royal Academy, Brussels (to appear, 2019). See https://www.humanities. 9. R. Arthur, Leibniz in Cantor's Paradise. In Modern and New Essays on Logic, Mathematics, Epistemology, ed. V. De Risi, Boston Studies in Philosophy and History of Science, Berlin, Springer 2019. (forthcoming) 10. J. Bair, P. B laszczyk, R. Ely, V. Henry, V. Kanovei, K. Katz, M. Katz, S. Kutateladze, T. McGaffey, D. Schaps, D. Sherry, S. Shnider, Is mathematical history written by the victors?, Notices of the American Mathematical Society, 60 (2013), ¹7, 886-904. See http://www.ams.org/notices/ 11. J. Bair, P. B laszczyk, R. Ely, V. Henry, V. Kanovei, K. Katz, M. Katz, T. Kudryk, S. Kutateladze, T. McGaffey, T. Mormann, D. Schaps, D. Sherry, Cauchy, infinitesimals and ghosts of departed quantifiers, Mat. Stud., 47 (2017), ¹2, 115-144. See http://dx.doi.org/10.15330/ms. 12. J. Bair, P. B laszczyk, Ely, R. Henry, V. Kanovei, V. Katz, K. Katz, M. Kutateladze, S. McGaffey, T. Reeder, P. Schaps, D. Sherry, D. Shnider, S. Interpreting the infinitesimal mathematics of Leibniz and Euler, Journal for General Philosophy of Science, 48 (2017), ¹2, 195-238. See doi:10.1007/s10838-016- 9334-z, https://arxiv.org/abs/1605. 13. J. Bair, P. Blaszczyk, P. Heinig, M. Katz, J. Sch¨afermeyer, D. Sherry, Klein vs Mehrtens: restoring the reputation of a great modern, Mat. Stud., 48 (2017), ¹2, 189-219. See https://arxiv.org/abs/1803. 02193 and http://dx.doi.org/10.15330/ms. 14. J. Bair, M. Katz, D. Sherry, Fermat's dilemma: Why did he keep mum on infinitesimals? and the European theological context, Foundations of Science, 23 (2018), ¹3, 559-595. See http://dx.doi. org/10.1007/s10699-017-9542-y and https://arxiv.org/abs/1801. 15. T. Bascelli, E. Bottazzi, F. Herzberg, V. Kanovei, K. Katz, M. Katz, T. Nowik, D. Sherry, S. Shnider, Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow, Notices of the American Mathematical Society, 61 (2014), ¹8, 848-864. See http://www.ams.org/notices/ 201408/rnoti-p848.pdf and http://arxiv.org/abs/1407.0233 16. T. Bascelli, P. Blaszczyk, V. Kanovei, K. Katz, M. Katz, D. Schaps, D. Sherry, Leibniz versus Ishiguro: Closing a quarter-century of syncategoremania, HOPOS: The Journal of the International Society for the History of Philosophy of Science, 6 (2016), ¹1, 117-147. See http://dx.doi.org/10.1086/ 17. T. Bascelli, P. Blaszczyk, A. Borovik, V. Kanovei, K. Katz, M. Katz, S. Kutateladze, T. McGaffey, D. Schaps, D. Sherry, Cauchy's infinitesimals, his sum theorem, and foundational paradigms, Foundations of Science, 23 (2018), ¹2, 267-296. See http://dx.doi.org/10.1007/ 18. T. Bascelli, P. Blaszczyk, V. Kanovei, K. Katz, M. Katz, S. Kutateladze, T. Nowik, D. Schaps, D. Sherry, Gregory's sixth operation. Foundations of Science, 23 (2018), ¹1, 133-144. See http://dx.doi.org/ 10.1007/s10699-016-9512-9 and https://arxiv.org/abs/1612. 19. J. Bell, A primer of infinitesimal analysis, Second edition, Cambridge University Press, Cambridge, 2008. 20. Joh. I. Bernoulli, Der Briefwechsel von Johann I Bernoulli, Band 2, Der Briefwechsel mit Pierre Varignon, Erster Teil: 1692-1702, Bearbeitet und kommentiert von Pierre Costabel und Jeanne Peiffer: unter Benutzung von Vorarbeiten von Joachim Otto Fleckenstein, edited by D. Speiser, Birkh¨auser, Basel, Boston, Berlin, 1988. 21. V. Blasjo, On what has been called Leibniz's rigorous foundation of infinitesimal geometry by means of Riemannian sums, Historia Math., 44 (2017), ¹2, 134-149. 22. V. Blasjo, Reply to Knobloch, letter to the editor, Remarks on the paper Knobloch ([68], 2017), Historia Math, 44 (2017), ¹4, 420-422. 23. V. Blasjo, Transcendental curves in the Leibnizian calculus, Studies in the History of Mathematical Enquiry, Elsevier/Academic Press, London, 2017. 24. P. Blaszczyk, V. Kanovei, K. Katz, M. Katz, T. Kudryk, T. Mormann, D. Sherry, Is Leibnizian calculus embeddable in first order logic?, Foundations of Science, 22 (2017), ¹4, 717-731. See http://dx.doi. org/10.1007/s10699-016-9495-6 and https://arxiv.org/abs/1605. 25. M. Blay, Deux moments de la critique du calcul infinitesimal: Michel Rolle et George Berkeley, Etudes sur l'histoire du calcul infinitesimal, Rev. Histoire Sci., 39 (1986), ¹3, 223-253. 26. A. Borovik, M. Katz, Who gave you the Cauchy-Weierstrass tale? The dual history of rigorous calculus, Foundations of Science, 17 (2012), ¹3, 245-276. See http://dx.doi.org/10.1007/ s10699-011-9235-x and https://arxiv.org/abs/1108. 27. H. Bos, Differentials, higher-order differentials and the derivative in the Leibnizian calculus, Archive for History of Exact Sciences, 14 (1974), 1-90. 28. H. Breger, Leibniz's Calculation with Compendia, 2008, In Goldenbaum-Jesseph [44], 185-198. 29. H. Breger, On the grain of sand and heaven's infinity, 'Fur unser Gluck oder das Gluck anderer' Vortrage des X. Intemationalen Leibniz-Kongresses Hannover, 18-23 Juli 2016, Wenchao Li (ed.), in collaboration with Ute Beckmann, Sven Erdner, Esther-Maria Errulat, Jurgen Herbst, Helena Iwasinski und Simona Noreik, Band VI, Georg Olms Verlag, Hildesheim-Zurich-New York, (2017), 64-79. 30. J. Child, (ed.) The early mathematical manuscripts of Leibniz, Translated from the Latin texts published by Carl Immanuel Gerhardt with critical and historical notes by J. M. Child. The Open Court Publishing, Chicago-London, 1920. Reprinted by Dover in 2005. 31. A. Connes, Cyclic cohomology, noncommutative geometry and quantum group symmetries, Noncommutative geometry, 1-71, Lecture Notes in Math., 1831, Fond. CIME/CIME Found. Subser., Springer, Berlin, 2004. 32. J. Dauben, Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoit B. Mandelbrot. Princeton University Press, Princeton, NJ, 1995. 33. V. De Risi, The Development of Euclidean Axiomatics. The systems of principles and the foundations of mathematics in editions of the Elements from Antiquity to the Eighteenth Century, Archive for History of Exact Sciences, 70 (2016), ¹6, 591-676. 34. V. De Risi, Leibniz on the Continuity of Space, Leibniz and the Structure of Sciences, Modern and New Essays on Logic, Mathematics, Epistemology, ed. V. De Risi, Boston Studies in Philosophy and History of Science, Berlin, Springer 2019 (forthcoming). 35. P. Dugac, Elements d'analyse de Karl Weierstrass, Arch. History Exact Sci., 10 (1973), 41-176. 36. C. H. Jr. Edwards, The historical development of the calculus. Springer Verlag, New York-Heidelberg, 1979. 37. D. Fouke, Metaphysics and the eucharist in the early Leibniz, Studia Leibnitiana, 24 (1992), 145-159. 38. P. Fletcher, K. Hrbacek, V. Kanovei, M. Katz, C. Lobry, S. Sanders, Approaches to analysis with infinitesimals following Robinson, Nelson, and others, Real Analysis Exchange, 42 (2017), ¹2, 193-252. See https://arxiv.org/abs/1703. 39. P. Geach, Infinity in scholastic philosophy. Comment contributed to Robinson [102], (1967), 41-42. 40. C. Gerhardt, (ed.) Historia et Origo calculi differentialis a G. G. Leibnitio conscripta, Hannover, 1846. 41. C. Gerhardt, (ed.) Leibnizens mathematische Schriften, Berlin and Halle: Eidmann, 1850-63. 42. K. Godel, Kurt Godel: collected works. Vol. V. Correspondence H-Z. Edited by Solomon Feferman, John W. Dawson, Jr., Warren Goldfarb, Charles Parsons and Wilfried Sieg. The Clarendon Press, Oxford University Press, Oxford, 2003. 43. U. Goldenbaum, Indivisibilia Vera - How Leibniz Came to Love Mathematics (2008), In Goldenbaum- Jesseph [44], 53-94. 44. U. Goldenbaum, D. Jesseph, (Eds.) Infinitesimal Infinitesimal Differences: Controversies between Leibniz and his Contemporaries, Walter de Gruyter, Berlin-New York, 2008. 45. J. Gray, The real and the complex: a history of analysis in the 19th century, Springer Undergraduate Mathematics Series, Springer, Cham, 2015. 46. I. Hacking, Why is there philosophy of mathematics at all?, Cambridge University Press, Cambridge, 2014. 47. C.W. Henson, H.J. Keisler, On the strength of nonstandard analysis, Journal of Symbolic Logic, 51 (1986), ¹2, 377-386. 48. D. Hilbert, Uber das Unendliche, Mathematische Annalen, 95 (1926), 161-190. 49. H. Ishiguro, Leibniz's Philosophy of Logic and Language. Cornell University Press, 1972. 50. H. Ishiguro, Leibniz's philosophy of logic and language, Second edition, Cambridge University Press, Cambridge, 1990. 51. D. Jesseph, Truth in Fiction: Origins and Consequences of Leibniz's Doctrine of Infinitesimal Magnitudes, In Goldenbaum-Jesseph [44], 2008, 215-233. 52. D. Jesseph, Leibniz on the Elimination of infinitesimals, G.W. Leibniz, Interrelations between Mathematics and Philosophy, Norma B. Goethe, Philip Beeley, and David Rabouin, eds. Archimedes Series, Springer Verlag, 41 2015, 189-205. 53. V. Kanovei, K. Katz, M. Katz, T. Mormann, What makes a theory of infinitesimals useful? A view by Klein and Fraenkel, Journal of Humanistic Mathematics, 8 (2018), ¹1, 108-119. See http: //scholarship.claremont.edu/ 54. V. Kanovei, M. Katz, T. Mormann, Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics, Foundations of Science, 18 (2013), ¹2, 259-296. See http://dx.doi.org/10.1007/ s10699-012-9316-5 and http://arxiv.org/abs/1211.0244 55. T. Kanovei, M. Reeken, Internal approach to external sets and universes. III. Partially saturated universes, Studia Logica, 56 (1996), ¹3, 293-322. 56. K. Katz, M. Katz, Stevin numbers and reality, Foundations of Science, 17 (2012), ¹2, 109-123. See http://dx.doi.org/10.1007/ 57. M. Katz, D. Schaps, S. Shnider, Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond, Perspectives on Science, 21 (2013), ¹3, 283-324. See http://dx.doi.org/10.1162/ 58. M. Katz, D. Sherry, Leibniz's laws of continuity and homogeneity, Notices of the American Mathematical Society, 59 (2012), ¹11, 1550-1558. See http://www.ams.org/notices/ 59. M. Katz, D. Sherry, Leibniz's infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond, Erkenntnis, 78 (2013), ¹3, 571-625. See http://dx.doi. org/10.1007/s10670-012-9370-y and http://arxiv.org/abs/1205.0174 60. H.J. Keisler, Elementary Calculus: An Infinitesimal Approach. Second Edition, Prindle, Weber & Schmidt, Boston, 1986. An updated version is online at http://www.math.wisc.edu/~ 61. E. Knobloch, L'infini dans les mathematiques de Leibniz, Lamarra (ed.), L'infinito in Leibniz, Rome, (1990), 33-151. 62. E. Knobloch, The infinite in Leibniz's mathematics - The historiographical method of comprehension in context, Gavroglu, Christianids, Nicolaidis (eds.), Trends etc. Dordrecht, (1994) 265-278. 63. E. Knobloch, Galileo and Leibniz: different approaches to infinity, Archive for History of Exact Sciences, 54 (1999), ¹2, 87-99. 64. E. Knobloch, Leibniz's rigorous foundation of infinitesimal geometry by means of Riemannian sums, Foundations of the Formal Sciences, Berlin, 1 (1999), Synthese 133, ¹1-2, 59-73. 65. E. Knobloch, Generality and infinitely small quantities in Leibniz's mathematics - The case of his arithmetical quadrature of conic sections and related curves, [44], (2008), 171-183. 66. E. Knobloch, Leibniz and the infinite, Doc. Math., 2012, Extra vol.: Optimization stories, 19-23. 67. E. Knobloch, Review of “Arthur, R. Leibniz's actual infinite in relation to his analysis of matter. G. W. Leibniz, interrelations between mathematics and philosophy, 137-156, Archimedes, 41, Springer, Dordrecht, 2015” for MathSciNet, 2015. See https://mathscinet.ams.org/ 68. E. Knobloch, Letter to the editors of the journal Historia Mathematica. Remarks on the paper by Blasjo, [21], Historia Math., 44 (2017), ¹3, 280-282. 69. E. Knobloch, Leibniz's Parisian studies on infinitesimal mathematics, Navigating Across Mathematical Cultures And Times: Exploring The Diversity Of Discoveries And Proofs, Ioannis M Vandoulakis, Dun Liu, Inbunden Engelska, Eds. (to appear; 2019?). See summary at https://www.bokus.com/bok/ 9789814689366 70. G. Leibniz, Nova methodus pro maximis et minimis . . . , Acta Erudit. Lips., Oct. 1684. See Gerhardt [41], V, 220-226. 71. G. Leibniz, Tentamen de motuum coelestium causis, Acta Erudit. Lips., (1689), 82-96. 72. G. Leibniz, To l'Hospital, 14/24 June 1695, Gerhardt, [41], I, 287-289. 73. G. Leibniz, Responsio ad nonnullas difficultates a Dn. Bernardo Niewentiit circa methodum differentialem seu infinitesimalem motas, Acta Erudit. Lips., (1695). In Gerhardt [41], V, 320-328. A French translation by Parmentier is in [86, p. 316-334]. 74. G. Leibniz, Letter to Bernoulli, 22 August 1698, Gerhardt [41], III, 534-538. 75. G. Leibniz, Cum Prodiisset. . . mss Cum prodiisset atque increbuisset Analysis mea infinitesimalis. . . , Gerhardt [40], (1701), 39-50. See http://books.google.co.il/ 76. G. Leibniz, Letter to Varignon, 2 February 1702, Gerhardt [41], IV, 91-95. Published as “Extrait d'une Lettre de M. Leibnitz `a M. Varignon, contenant l'explication de ce qu'on a raporte de luy dans les Memoires de Trevoux des mois de Novembre & Decembre derniers.” Journal des s¸cavans, March 20, 1702, 183-186. See also http://www.gwlb.de/Leibniz/ 77. G. Leibniz, Letter to Varignon, 14 April 1702, Gerhardt, [41], IV, 97-99. 78. G. Leibniz, Letter to Varignon, 20 June 1702, Gerhardt [41], IV, 106-110. 79. G. Leibniz, Nouveaux Essais sur l'entendement humain, Ernest Flammarion, 1921, Originally composed in 1704 first published in 1765. 80. G. Leibniz, Quadrature arithmetique du cercle, de l'ellipse et de l'hyperbole, Marc Parmentier (Trans. and Ed.) /Latin text by Eberhard Knobloch (Ed.), J. Vrin, Paris, 2004. See https://books.google. co.il/books?id=fNTUULXHmQ0C 81. G. Leibniz, Letter to Jean-Paul Bignon, July 1705, Akademie edition, Reihe I, Band 24, N.464, 837-840. See http://www.nlb-hannover.de/ 82. G. Leibniz, Puisque des personnes. . . Manuscript, 27 July 1705, Gottfried Wilhelm Leibniz Library Hannover, LH 35, 7, 9. See http://digitale-sammlungen. 83. G. Leibniz, Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione potentiarum et differentiarum, et de lege homogeneorum transcendentali (1710), Gerhardt [41], V, 377-382. 84. G. Leibniz, Letter to Dagincourt, 11 September 1716, Dutens III, 500-501. 85. G. Leibniz, Philosophical papers and letters, Second Edition. Synthese Historical Library, V.2, Leroy E. Loemker, Editor and Translator. Kluwer Academic Publishers, Dordrecht-Boston-London, 1989. 86. G. Leibniz, La naissance du calcul differentiel. 26 articles des Acta Eruditorum, Translated from the Latin and with an introduction and notes by Marc Parmentier. With a preface by Michel Serres. Mathesis. Librairie Philosophique J. Vrin, Paris, 1989. See https://books.google.co.il/ 87. G. Leibniz, De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis, Edited, annotated and with a foreword in German by Eberhard Knobloch. Abhandlungen der Akademie der Wissenschaften in Gottingen. Mathematisch-Physikalische Klasse. Folge 3 [Papers of the Academy of Sciences in Gottingen. Mathematical-Physical Class. Series 3], 43. Vandenhoeck & Ruprecht, Gottingen, 1993. 88. G. Leibniz, The Leibniz-Des Bosses Correspondence. Translated, edited, and with an Introduction by Brandon C. Look and Donald Rutherford. Yale University Press, New Haven, CT, 2007. 89. G. Leibniz, Mathesis universalis. Ecrits sur la mathematique universelle. Translated from the Latin and with an introduction and notes by David Rabouin. Mathesis. Librairie Philosophique J. Vrin, Paris, 2018. 90. G. Leibniz, A. Arnauld, Briefwechsel zwischen Leibniz, Arnauld und dem landgrafen Ernst von Hessen- Rheinfels. Hannover, 1846. 91. S. Levey, Comparability of infinities and infinite multitude in Galileo and Leibniz, G. W. Leibniz, interrelations between mathematics and philosophy, 157-187, Archimedes, 41, Springer, Dordrecht, 2015. 92. P. Mancosu, The metaphysics of the calculus: a foundational debate in the Paris Academy of Sciences, 1700-1706, Historia Math., 16 (1989), ¹3, 224-248. 93. P. Mancosu, Philosophy of mathematics and mathematical practice in the seventeenth century. The Clarendon Press, Oxford University Press, New York, 1996. 94. T. Mormann, M. Katz, Infinitesimals as an issue of neo-Kantian philosophy of science, HOPOS: The Journal of the International Society for the History of Philosophy of Science, 3 (2013), ¹2, 236-280. See http://dx.doi.org/10.1086/ 95. O. Nachtomy, Review of “The Philosophy of the Young Leibniz. Mark Kulstad, Mogens Laerke, and David Snyder (eds.), The Philosophy of the Young Leibniz, Franz Steiner, 2009” for the Notre Dame Philosophical Review, 2009. Available at https://ndpr.nd.edu/news/ 24344-the-philosophy-of-the- 96. O. Nachtomy, Review of Leibniz by Richard T.W. Arthur, The Leibniz Review, 24 (2014), 123-130. Available at https://ohadnachtomy.files. 97. E. Nelson, Internal set theory: a new approach to nonstandard analysis, Bulletin of the American Mathematical Society, 83 (1977), ¹6, 1165-1198. 98. M. Parmentier, Demonstrations et infiniment petits dans la Quadratura arithmetica de Leibniz, Rev. Histoire Sci., 54 (2001), ¹3, 275-289. 99. V. Peckhaus, Review of “Arthur, R. Leibniz's syncategorematic infinitesimals, Arch. Hist. Exact Sci., 67 (2013), ¹5, 553-593” for MathSciNet, 2013. See https://mathscinet.ams.org/ 100. D. Rabouin, Leibniz's rigorous foundations of the method of indivisibles, Vincent Jullien (Ed.), Seventeenth-Century Indivisibles Revisited, Science Networks, Historical Studies, Birkhauser, Basel, 49, (2015), 347-364. See http://dx.doi.org/10.1007/978- 101. A. Robinson, Non-standard analysis. North-Holland Publishing, Amsterdam, 1966. 102. A. Robinson, The metaphysics of the calculus, Problems in the philosophy of mathematics, Proceedings of the International Colloquium in the Philosophy of Science, London, 1965, 1, edited by Imre Lakatos, North-Holland Publishing, Amsterdam, (1967), 28-46. 103. A. Robinson, Concerning progress in the philosophy of mathematics, Logic Colloquium 1973 (Bristol, 1973), 41-52, Studies in Logic and the Foundations of Mathematics, 80, North-Holland, Amsterdam, 1975. Reprinted in Selected Papers of Abraham Robinson [104, p. 557]. 104. A. Robinson, Selected papers of Abraham Robinson. Vol. II. Nonstandard analysis and philosophy. Edited and with introductions by W. A. J. Luxemburg and S. Korner. Yale University Press, New Haven, Conn, 1979. 105. M. Rolle, Remarques de M. Rolle, de l'Academie Royale des Sciences, touchant le probleme general des tangentes: Pour servir de replique `a la reponse qu'on a inseree, sous le nom de M. Saurin, dans le Journal des S¸cavans du 3. aoust 1702. Jean Boudot, Paris, 1703. 106. M. Rolle, Du nouveau syst`eme de l'infini. Memoires de mathematique et de physique de l'Academie royale des sciences, Academie royale des sciences, 1703. See https://hal.archives-ouvertes. 107. B. Russell, Introduction to Mathematical Philosophy. George Allen & Unwin, London, 1919. 108. J. Saurin, Defense de la Reponse `a M. Rolle de l'Ac. Roy. des Sc. contenue dans le Journal des S¸cavans du 3. Aoust 1702. contre la Replique de cet auteur publiee en 1703. sous le titre de Remarques touchant le probleme general des Tangentes, etc., Journal des S¸cavans, 16 (1705), 23 April 1705, 241-256. 109. J. Saurin, Continuation de la defense de M. Saurin contre la Replique de M. Rolle publiee en 1703, sous le titre de Remarque touchant le Probleme general des Tangentes, &c, Amsterdam, ches Henry Westein, 1706. 110. G. Schubring, Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17-19th Century France and Germany. Sources and Studies in the History of Mathematics and Physical Sciences. Springer Verlag, New York, 2005. 111. D. Sherry, The Jesuits and the method of indivisibles, Foundations of Science, 23 (2018), ¹2, 367-392. 112. D. Sherry, M. Katz, Infinitesimals, imaginaries, ideals, and fictions, Studia Leibnitiana, 44 (2012), ¹2, 166-192. See http://www.jstor.org/stable/ 113. D. Spalt, Die Analysis im Wandel und im Widerstreit. [Analysis in transformation and conflict] Eine Formierungsgeschichte ihrer Grundbegriffe. [A history of the formation of its basic concepts] [On title page: Eine Formierungsgeschichte ihrer Grundgeschichte]. Verlag Karl Alber, Freiburg, 2015. 114. O. Stolz, Zur Geometrie der Alten, insbesondere uber ein Axiom des Archimedes, Mathematische Annalen, 22 (1883), ¹4, 504-519. 115. S. Unguru, Fermat revivified, explained, and regained, Francia, 4 (1976), 774-789. 116. P. Varignon, Letter to Leibniz, 28 November 1701, Gerhardt [41], IV, 89-90. 117. A. Yushkevich, The development of the concept of the limit up to K. Weierstrass, Istor.-Mat. Issled., 30 (1986), 11-81. |
Pages |
186-224
|
Volume |
49
|
Issue |
2
|
Year |
2018
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |