On convergence of random multiple Dirichlet series |
|
Author |
andriykuryliak@gmail.com1, olskask@gmail.com2, n-stas@ukr.net3
1) Ivan Franko National University of L’viv, Lviv, Ukraine; 2) Ivan Franko National University of L’viv, Lviv, Ukraine; 3) Ivan Franko National University of L’viv, Lviv, Ukraine
|
Abstract |
Let Fω(s)=∑∞‖n‖=0f(n)(ω)exp{(λ(n),s)},\ where the exponents λ(n)=(λ(1)n1,…,λ(p)np)∈Rp+,
(n)=(n1,…,np)∈Zp+, p∈N, ‖n‖=n1+…+np, and the coefficients f(n)(ω) are pairwise independent random complex variables. In the paper, in particular, we prove the following statements: 1) If τ(λ)=¯lim‖n‖→+∞ln‖n‖/‖λ(n)‖=0, then in order that a Dirichlet series be convergent a.s. in the whole space Cp, it is necessary and sufficient that
(∀Δ>0): ∑+∞‖n‖=0(1−F(n)(exp(−Δ‖λ(n)‖)))≤+∞.
2)
If τ(λ)=0, then in order that σ∈∂Ga∩(R+∖{0})p a.s., it is necessary and sufficient that
(∀ε>0): +∞∑‖n‖=0(1−F(n)(e(−1+ε)(σ,λ(n))))≤+∞ ∧ +∞∑‖n‖=0(1−F(n)(e(−1−ε)(σ,λ(n))))=+∞,
where F(n)(x):=P{ω:|f(n)(ω)|≤x}, x∈R, (n)∈Zp+ is the distribution function of |f(n)(ω)|,
∂Ga is the set of conjugate abscissas of absolute convergence of the random Dirichlet series Fω.
|
Keywords |
multiple Dirichlet series; conjugate abscissas of convergence; random exponents
|
DOI |
doi:10.15330/ms.49.2.122-137
|
Reference |
1. T. Kojima, On the double Dirichlets series, Sc. Reports Tohoku Imperial Univ. (1), Math., Phys.,
Chem., 9 (1920), 351-340.
2. V.P. Gromov, Multiple series of Dirichlet polynomials, Sib. Math. J., 10 (1969), №3, 374-386, English transl. from Sibirski Matematicheski Zhurnal, 10 (1969), №3, 522-536. 3. V.P. Gromov, To the theory of multiple Dirichlet series, Izv. AN ArmSSR. Mat., 5 (1970), №5, 449-457. (in Russian) 4. V.P. Gromov, To the theory of multiple Dirichlet series, Izv. AN ArmSSR. Mat., 7 (1970), №2, 90-103. (in Russian) 5. A.I. Janusauskas, Double Dirichlet series, Lit. Mat. Sb., 18 (1978), №3, 201.211, English transl. in Lit. Math. J., 18 (1978), №3, 445-452. 6. A.I. Janusauskas, Properties of conjugate abscissas of convergence of double Dirichleet series, Lit. Mat. Sb., 19 (1979), №1, 213.228, English transl. in Lit. Math. J. 19 (1979), №1, 152-164. 7. O.Yu. Zadorozhna, O.M. Mulyava, On the conjugate abscissas convergence of the double Dirichlet series, Mat. Stud., 28 (2007), №1, 29-35. (in Ukrainian) 8. O.Yu. Zadorozhna, O.B. Skaskiv, On the conjugate abscissas convergence of multiple Dirichlet series, Carpathian Mathematical Publications, 1 (2009), №2, 152.160. (in Ukrainian) 9. O.Yu. Zadorozhna, O.B. Skaskiv, On the domains of convergence of the double Dirichlet series, Mat. Stud., 32 (2009), №1, 81-86. (in Ukrainian) 10. O.B. Skaskiv, O.Yu. Zadorozhna, On domains of convergence of multiple random Dirichlet series, Mat. Stud., 36 (2011), №1, 51-57. 11. A.O. Kuryliak, O.B. Skaskiv, N.Yu. Stasiv, Abscissas convergence of the random multiple Dirichlet series, Precarpatian visn. NTSh. Chyslo, (2018), №1, (42), 1-11. (in Ukrainian) 12. O.M. Mulyava, On the convergence abscissa of a Dirichlet series, Mat. Stud., 9 (1998), №2, 171-176. (in Ukrainian) 13. O.Yu. Zadorozhna, O.B. Skaskiv, Elementary remarks about abscissas of convergence of the Laplace- Stieltjes integrals, Bukovyn. mat. zhurn., 1 (2013), №3-4, 45-50. (in Ukrainian) 14. O.B. Skaskiv, A.I. Bandura, Asymptotic estimates of positive integrals and entire functions, Lviv-Ivano-Frankivsk: Goliney, 2015, 108 p. 15. Skaskiv O.B., Stasiv N.Yu. Abscissas of convergence of Dirichlet series with random exponents, Visn. Lviv. Univ. Ser. mech.-mat., 84 (2017), 76-91. (in Ukrainian) 16. Shapovalovska L.O., Skaskiv O.B. On the radius of convergence of random gap power series, Int. Journal of Math. Analysis, 9 (2015), №38, 1889-1893. 17. Skaskiv O.B., Shapovalovska L.O. On the abscissas of convergence of random Dirichlet series, Bukovyn. Mat. Zhurn., 3 (2015), №1, 110-114. (in Ukrainian) 18. Kuryliak A.O., Skaskiv O.B., Stasiv O.Yu. On the abscissas of convergence of Dirichlet series with random pairwise independent exponents, ArXiv:1703.03280v1[math.CV] 12 Mar 2017, 12 p. 19. Kuryliak A.O., Skaskiv O.B., Stasiv O.Yu. On the convergence of Dirichlet series with random exponents, Int. Journal of Appl. Math., 30 (2017), №3, 229-238. 20. Kuryliak A.O., Skaskiv O.B., Stasiv N.Yu. On the abscissas of convergence of Dirichlet series with the random exponents and coefficients, Bukovyn. Mat. Zhurn., 5 (2017), №3-4, 90-97. 21. Erdos P., Renyi A. On Cantors series with convergent ∑1/qn, Ann. Univ. Sci. Budapest Eotvos. Sect. Math., 2 (1959), 93-109. 22. Petrov V.V., Sums of idependent random variables, New York: Springer, 1975. 23. Billingsley P., Probability and measure, New York: Wiley, 1986. |
Pages |
122-137
|
Volume |
49
|
Issue |
2
|
Year |
2018
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |