Metrically Ramsey ultrafilters

Author
I. V. Protasov1, K. D. Protasova2
1) Faculty of Computer Science and Cybernetics, Kyiv University, Kyiv, Ukraine; 2) Faculty of Computer Science and Cybernetics, Kyiv University, Kyiv, Ukraine
Abstract
Given a metric space $(X,d)$, we say that a mapping $\chi\colon [X]^{2}\longrightarrow\{0,1\}$ is an isometric coloring if $d(x,y)=d(z,t)$ implies $\chi(\{x,y\})=\chi(\{z,t\})$. A free ultrafilter $\mathcal{U}$ on an infinite metric space $(X,d)$ is called metrically Ramsey if, for every isometric coloring $\chi$ of $[X]^{2}$, there is a member $U\in\mathcal{U}$ such that the set $[U]^{2}$ is $\chi$-monochrome. We prove that each infinite ultrametric space $(X,d)$ has a countable subset $Y$ such that each free ultrafilter $\mathcal{U}$ on $X$ satisfying $Y\in\mathcal{U}$ is metrically Ramsey. On the other hand, it is an open question whether every metrically Ramsey ultrafilter on the natural numbers $\mathbb{N}$ with the metric $|x-y|$ is a Ramsey ultrafilter. We prove that every metrically Ramsey ultrafilter $\mathcal{U}$ on $\mathbb{N}$ has a member with no arithmetic progression of length 2, and if $\mathcal{U}$ has a thin member then there is a mapping $f\colon \mathbb{N}\longrightarrow\omega $ such that $f(\mathcal{U})$ is a Ramsey ultrafilter.
Keywords
selective ultrafilter; metrically Ramsey ultrafilter; ultrametric space
DOI
doi:10.15330/ms.49.2.115-121
Reference
1. M. Filali, I. Protasov, Ultrafilters and topologies on groups, Math. Stud. Monogr. Ser., V.13, VNTL, Lviv, 2010.

2. R. Graham, B. Rotschild, J. Spencer, Ramsey Theory, Willey, New York, 1980.

3. N. Hindman, I. Protasov, D. Strauss, Strongly summable ultrafilters on Abelian groups, Mat. Stud., 10 (1998), ¹2, 121–132.

4. K. Kunen, Combinatories, in: Handbook in Mathematical Logic, V.90 (Studies in Logic on Foundations of Mathematics, J. Barwise (editor)), Elsevier, 1982.

5. O. Petrenko, I. Protasov, Selective and Ramsey ultrafilters on G-spaces, Notre Dame J. Formal Logic, 58 (2017), 453–459.

6. I. Protasov, Ultrafilters and partitions of Abelian groups, Ucr. Mat. Zh., 53 (2001), 85–93; translation in Ukr. Math. J. 53 (2001), 99–107.

7. I. Protasov, Isometric versions of Ramsey theorem, EUREKA, 65 (2017), 25–27.

8. I. Protasov, On colorings and isometries, Proc. Intern. Geometry Center, 10, (2017), ¹2, 1–7; translation in Ukr. Math. J. 53 (2001), 99–107.

Pages
115-121
Volume
49
Issue
2
Year
2018
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue