Sandwich results for higher order fractional derivative operators

Author
M. Zayed1, T. Bulboaca2
1) Department of Mathematics, Faculty of Science Menofia University, Shebin Elkom, Egypt; 2) Faculty of Mathematics and Computer Science Babes-Bolyai University, Cluj-Napoca, Romania
Abstract
In this paper we obtain some differential subordinations and superordinations related to a generalized fractional derivative operator for higher order derivatives of multivalent functions. Moreover, we derive some sandwich results under certain assumptions on the parameters involved, and these new results generalize some previously well-known theorems.
Keywords
analytic functions; univalent functions; differential subordination and superordination; hypergeometric function; generalized fractional derivative operator
DOI
doi:10.15330/ms.49.1.52-66
Reference
1. R.M. Ali, V. Ravichandran, K.M. Hussain, K.G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15 (2004), №1, 87-94.

2. S.M. Amsheri, V. Zharkova, Differential subordinations and superordinations for p-valent functions defined by fractional derivative operator, Demonstr. Math., 46 (2013), №3, 505-515.

3. S.M. Amsheri, V. Zharkova, Differential sandwich theorems of p-valent functions associated with a certain fractional derivative operator, Kragujevac J. Math., 35 (2011), №3, 387-398.

4. M.K. Aouf, A.O. Mostafa, H.M. Zayed, Some characterizations of integral operators associated with certain classes of p-valent functions defined by the Srivastava-Saigo-Owa fractional differintegral operator, Complex Anal. Oper. Theory, 10 (2016), №6, 1267-1275.

5. M.K. Aouf, A.O. Mostafa, H.M. Zayed, Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator, Quaest. Math., 39 (2016) №4, 545-560.

6. M.K. Aouf, A.O. Mostafa, H.M. Zayed, On certain subclasses of multivalent functions defined by a generalized fractional differintegral operator, Afr. Mat., 28 (2017), №1-2, 99-107.

7. T. Bulboaca, Classes of first-order differential superordinations, Demonstr. Math., 35 (2002), №2, 287-292.

8. T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. (N.S.), 13 (2002), №3, 301-311.

9. T. Bulboaca, Differential subordinations and superordinations, new results, House of Scientific Boook Publ., Cluj-Napoca, 2005.

10. G.P. Goyal, J.K. Prajapat, A new class of analytic p-valent functions with negative coefficients and fractional calculus operators, Tamsui Oxf. J. Inf. Math. Sci., 20 (2004), №2, 175-186.

11. S.S. Miller, P.T. Mocanu, Differential subordinations: theory and applications, Series on Monographs and Textbooks in Pure and Appl. Math., V.255, Marcel Dekker, Inc., New York, 2000.

12. S.S. Miller, P.T. Mocanu, Subordinations of differential superordinations, Complex Var., 48 (2003) №10, 815-826.

13. A.O. Mostafa, M.K. Aouf, H.M. Zayed, T. Bulboac.a, Multivalent functions associated with Srivastava- Saigo-Owa fractional differintegral operator. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, https://doi.org/10.1007/s13398-017-0436-1, /to appear/

14. S. Owa, On the distortion theorems I. Kyungpook Math. J., 18 (1978), 53-59.

15. W.C. Royster, On the univalence of a certain integral, Michigan Math. J., 12 (1965), №4, 385-387.

16. T.N. Shanmugam, V. Ravichandran, S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3 (2006), №1, 1-11.

Pages
52-66
Volume
49
Issue
1
Year
2018
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue