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In this paper we obtain some differential subordinations and superordinations related to
a generalized fractional derivative operator for higher order derivatives of multivalent func-
tions. Moreover, we derive some sandwich results under certain assumptions on the parameters
involved, and these new results generalize some previously well-known theorems.

In memory of Professor Yuri Borisovich Zelinskii

1. Introduction. Let H(U) denote the space of analytic functions in U := {z € C: |z| < 1}
and let H[a, p] denote the subclass of functions f € H(U) of the form

fz)=a+a? + a2’ +..., 2€U (a€C,peN={1,2...}).

Also, let A(p) denote the subclass of multivalent functions f € H(U) with the power
series expansion

f(z) =2 + Zap+nzp+”, 2eU (peN). (1)
n=1
For two functions f, g € H(U), we say that the function f is subordinate to g, written
f < g, if there exists a Schwarz function w, analytic in U, with w(0) = 0 and |w(2)| < 1,
such that f(z) = g(w(z)) for all z € U.
Furthermore, if the function g is univalent in U, then we have the following equivalence
(see [9,11]):
f<ge (f(0)=g(0) and F(U)C g(U)).

Let ¢(r,s,t;2): C* x U — C and h be univalent in U. If p is analytic in U and satisfies
the second order differential subordination

d(p(2), 2p'(2), 22" (2); 2) < h(2), z € U, (2)

then p is a solution of the differential subordination (2). The univalent function ¢ is said to
be a dominant of (2) if p < ¢ for all p that satisfying (2). A dominant ¢ is called the best
dominant if ¢ < q for all dominants q.
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Let (r,s,t;2): C3> x U — C and h be analytic in U. If p and ¢(p(2), 2p/(2), 2%p"(2); 2)
are univalent functions and if p satisfies the second order differential superordination

h(z) < @(p(2), 2p'(2), 2" (2); 2), 2 €U, (3)

then p is a solution of the differential superordination (3). An analytic function ¢ is said
to be a subordinant of (3) if ¢ < p for all p satisfies (3). A univalent subordinant ¢ that
satisfies ¢ < ¢ for all subordinants ¢ of (3) is said to be the best subordinant. Recently, Miller
and Mocanu ([12]) obtained conditions on h, ¢ and ¢(p(2), 2p'(2), 22p"(2); 2) for which the
following implication holds:

hz) < o(p(z), 20 (2), 22p"(2); 2) = q(2) < p(z2), z € U.

Following Miller and Mocanu ([12]), Bulboaca (|7]) investigated certain classes of first
order differential superordinations as well as superordination preserving integral operators
(I8]). Ali et al. [1] used the results obtained by Bulboaca (|8]) and gave the sufficient conditions
for certain normalized analytic functions f to satisfy

f(2)
2f'(2)

where ¢; and ¢y are given univalent functions in U with ¢;(0) = ¢2(0) = 1.
Shanmugam et al. [16] obtained sufficient conditions for normalized analytic functions to

sl /() )
a1(z) < 0 < @(2), @lz) < 20)

where ¢; and ¢y are univalent functions in U with ¢;(0) = ¢2(0) = 1.
Note that for a function f € A(p) of the form (1) the m-th order derivative of f could
be written as

Q(z) < < q(z), z €T,

< q2(2), 2z €T,

f(m)(z) = (5(10, m)zpim + Z o(p+n, m)ap+nzp+nima zeU

n=1

(p>m, meNy:=NU{0}),
where

6(p,m) = ! -—{p(p_l)---(p—erl), ifm # 0,

(p—m)! " |1, ifm = 0.

Let oF}(a, b; c; z) be the well-known (Gaussian) hypergeometric function defined by

o Fi(a,b;c;2) - Zanb z e U,

(€)n(1),
n=0 n

where ¢ # 0, —1,—2,... and

’ if n=0,
(Mn = {)\(A+1)()\+2)_..()\+n—1), if n e N.

We will recall some definitions and lemmas which will be used in our paper.
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Definition 1 ([14]). The fractional derivative of order X for a function f is defined by

Dﬁ“%_FF;E%[f@T%“K(0§A<mzem

where f is analytic in a simply-connected region of the complex z-plane containing the origin
and the multiplicity of (z — ()~ is removed by requiring log(z —¢) to be real when z—¢ > 0.

In this paper we define the generalized fractional derivative operator for higher order
derivative of multivalent functions as follows:

Definition 2. Assume that 0 < A < 1, y,n € Rand m € Ny. Then, the generalized fractional
derivative operator of order m for a function f € A(p) is given by

Tt (m) f () =

where f is an analytic function in a simply-connected region of the complex z-plane contai-
ning the origin with the order f(z) = O(|z|°), 2z = 0 when ¢ > max{0,u — n} — 1, and the
multiplicity of (z — ()™ is removed by requiring log(z — ¢) to be real when z — ¢ > 0.
Remark 1. (i) Note that JS”Q""”’(O) = Jé\”z”’”’p ([2]-16], [13]).

(ii) Under the hypotheses of Definition 2 we have

d*
R ) £(2) = 2L g2 ) )
Note that Jé\z)‘"p D2, and denote
DX (m) = I (m). (4)

Goyal and Prajapat ([10], see also [2-4,6]) defined the operator My%"": A(p) — A(p)
by
_Tlp+1—-pT(p+1—X+n)
Plp+Dl(p+1—p+n)

1 1-—
—ZP+Z (p+ p+ BN
p+1—pwp+1—=X+n),

I f(2)

—+n
apn 2", 2 €U,

<0§/\<1, w<p+1, n>max{/\,,u}—p—1>,

where f € A(p) has the form (1).
Let now define the operator Ma\:f P(m): A(p) — A(p —m) as follows

F(p —m+ 1— M)F(p —m+ 1—-A + T/) Z”J)"“’"’p(m)f(z) .
0,z -

A 515 =
Mg (m) f(2) = Tlp—m~+DI(p—m~+1—p+n)

= d(p,m)""" + Z S(p+n,m)W,(p,m,\, 1, n)apn, 2" 2 €T,

n=1
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(0§x\<1, w<p—m++1, 77>max()\,u)—p+m—1>,

where
(p_m+1)n(p_m+1_u+77)n

p=m+1—palp—m+1=A+n),
and f € A(p) has the power series expansion (1).

\Ijn(pa m> /\7 :uv 77) = (

Remark 2. Note that Méf P(0) = MS;‘ P (Goyal and Prajapat [10]). It is easy to verify
that for z € U,

2 (MY (m) £(2)) = (0= m = )M () ) 4 MY () (). (5)

Definition 3 ([11]). Denote by Q the set of all functions f that are analytic and univalent
on U\ E(f), where
B(f) i= {s € 0U: lim (2) = oo}
Z—=<

and are such that f'(¢) # 0 for ¢ € OU \ E(f).

Lemma 1 ([11]). Let ¢ be a univalent function in U and § and ¢ be analytic in a domain D
containing q(U), with ¢p(w) # 0 when w € ¢(U). Set

U(2) = 2¢'(2)p(q(2)) and  h(z) =0(q(2)) +¢(2), z € U.

Suppose that

(i) 1 is starlike univalent in U,

(ii) Re ZZ;(ZZ)) >0, zeU.

If p is analytic with p(0) = ¢(0), p(U) C D and

0(p(2)) + 2p'(2)e(p(2)) < 0(a(2)) + 24 (2)p(a(2)), z €U,
then p < q and q is the best dominant.

Lemma 2 ([7]). Let q be a univalent function in U and 0 and ¢ be analytic in a domain D
containing q(U). Suppose that

; 0’ (q(2))
(1) Rem>0,Z€U,
(i) ¥(2) = 2q'(2)p(q(2)) is starlike univalent in U.

If p € H[q(0),1] N Q with p(U) C D, 0(p(2)) + 2p/(2)p(p(z)) is univalent in U and
0(q(2)) + 2¢'(2)p(a(2)) < O(p(2)) + 21/ (2)(p(2)), 2z € U,
then g < p and q is the best subordinant.

Lemma 3 ([15]). The function q(z) = (1 — 2)72% 2z € U, is univalent in U if and only if
|2ab — 1] <1 or [2ab+ 1] < 1.

2. Subordination results. Unless otherwise mentioned, we assume throughout this paper
that 0 < A< 1L,pu<p—m+1,n>max{\;u} —p+m—1,me Ny, m <p, peN, and
denote C* := C\ {0}.
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Theorem 1. Let ¢ be univalent in U with ¢q(0) = 1, ¢(z) # 0 for all z € U and Z;’ES) be
starlike univalent in U, such that

Re {1+éq( PR TR LO Zq/(z)] >0,2€U, (B,yeC, CeC). (6)

¢ ¢ ¢(z)  ql2)
Let f € A(p) and for z € U,

NP NP 2
Q)\,‘u,,n,p,m (B7 v, C) f(Z) = ﬁ )\+13;‘ilm—’<—?;)f<z) + ~ < 0,z (m)f(Z) ) n
Mo e

i) MG )
PR NS P M2t 22
)

If )

Onsunn (8.7:6) F(2) < Ba(2) 49 + 2, 2 e, )
e M () ()

YT B
and ¢ is the best dominant of (8).
Proof. Let
M2 ) ()

p(z) = z2eU

My ) £ ()

Differentiating logarithmically with respect to z the above relation and using (5) we obtain
zp'(2) Mot (m) £(2)

=(p—-m-—p) NEP -

Mgz (m) f(2)

A 2, )

(2)
R

Now we apply Lemma 1 with 6(w) = fw +~w? and p(w) = & Clearly, @ is analytic in C,
¢ is analytic in C* and p(w) # 0 for w € C*. Also, let ¥(z) = 2¢'(2)¢(q(2)) = gzgéj), zeU,
and h(z) = Bq(2) + 7¢*(2) + L&, 2z € U. Since (0) = 0, ¢/(0) # 0 and

Re (142082 o g e

) a(z)
so v is starlike function in U, and by (6)
2h'(z) _ B 2 2q"(2) _ zq(2)
Re o02) = Re [1+Zq(2)+ (2) + O } >0, zeU.

v,
¢!
Thus, according to the Lemma 1, from (8) it follows that p < ¢ and ¢ is the best dominant,
which completes our proof. n
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Corollary 1. Assume that (6) holds with q(z) = }igz, zeU, with -1 < B<A<1, and
feAp). If

, 2z €U, 9)

A Az\? A—
Q/\,u,n,p,m(ﬁa’%of(z)<51+ 4 (1+ Z) C( ( B)z

1+ Bz 1+ Bz 1+ Az)(1+ Bz)

then \
NI () 1 A
z
Mot (m) f(z) 1+ B2
and q is the best dominant of (9).

Corollary 2. Assume that (6) holds with q(z) = (%)E, z € U, with 0 < ¢ < 1, and
feAlp). If

e,

€ 2¢e
QA7u7n,p,m(ﬁ,'y,C)f(z)<ﬁ(1+z) +’y<1+z) +<%, 2 e, (10)

1—=z2 1—2

then

M H 2 (m) f (2 1 ©

Moz (1 W) 1+ R
Myt P (m) f(z) N\ ==

and q is the best dominant of (10).

Corollary 3. Putting € = 1 in Corollary 2 we obtain the following special case:
Assume that (6) holds with q(z) = }%ﬁ, z€U, and f € A(p). If

142 1+z2 2 2z
Q — 11
Ao (8,7, €) F(2) < B— +7<1_Z) Ty 7 el (11)
then \
M sH57,D
Re 0= (m)J (2 >0, z€ U,

e
and q is the best dominant of (11).
Corollary 4. Assume that (6) holds with q(z) = e**, 2 € U, with |A| < 7, and f € A(p). If

Q)\,u,n,p,m (57 e C) f(Z) < BeAz + 762142 + CAZ, S [Ua (12>

then
ME"P (m) f(z)

M8+1,,u+1,77+1,p(m)f(z)
and q is the best dominant of (12).

Corollary 5. Let a,b € C* such that |2ab—1| < 1 or |2ab+1| < 1, let f € A(p) and
suppose that (6) holds for q(z) = (1 — 2)72%, 2 € U, with a,b € C*. If

6] v 2abz

1
A=z Ty Ty #EU (13)

Az

<e?* zel,

Q)\,u,n,p,m (67 e C) f(Z) =

then \
Mgt (m) f(2)
My ) £ ()

and q is the best dominant of (13).

<(1—2)7% 2,
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Corollary 6. Suppose that (6) holds for ¢(z) = (1+ Bz) X(AB_B), zeU,with—-1<B<A<

1, B#0, x € C*, such that X2 — 1] <1 or |X42B) 4 1] < 1. If f € A(p) and

X(A—B) 2x(A—B) A—B)z
Onpnan (8.71,0) F2) < B0+ B2 14+ B 25 4 (UZDE ey g
then
MA“U':T]»p _
0,z (m)f(z) < (1 n BZ) x(A B)7 ceU,

MLptlntl,
Mg T (m) f(2)

and q is the best dominant of (14).
Using similar arguments to the proof of Theorem 1, we obtain the following theorem.

Theorem 2. Let q be a convex function in U with q(0) = 1, ¢(z) # 0 for all z € U and
Red > 0, ¥ € C*. Let f € A(p) and denote

M/\,um,p(m)f(z) M)\+1:H+1777+1,p(m>f<z)
A m i) = 0,2 1_|_ 9 - . 0,z o
M3+2,u+2m+2,p<m)f<z)
— —m—pu—1 e +1 , 2z € U. 15
(p m=p )M(/}:Luﬂ,rz%—l,p(m)f(z) < ( )
If

A%um,p,mwv('z) <q(2z) + ﬁzq’(z), z €U, (16)

then

Mo (m) f (2)

Mo P (m) £(2)

<q(2), z€ U,

and q is the best dominant of (16).

Taking m = 0 in Theorem 2 we obtain the following result due to Amsheri and Zharkova
(|3, Theorem 2.1|)

Corollary 7. Let g be a convex function in U with q(0) = 1, ¢(z) # 0 for all z € U and
Red > 0, ¥ € C*, and denote

Aspinp(9) 7= Do o). (17)
If f € A(p) and
Ay pnp(0)f(2) < q(2) + 024 (2), z €U, (18)
then
M)\uuﬂ?:P
02 /() <q(z), z €U,

A1,p+1,m4+1,
MO;"Z_ pt+1m+1p (z)

and q is the best dominant of (18).
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Theorem 3. Let ¢ be univalent in U with q(0) =1, q(z) # 0 for all z € U, Zgég) be starlike
univalent in U, and suppose that

2q"(z)  2q'(2)

o 21 4
Re |14+ —q(z) + —q¢°(2) + /) a02)

3 3
Let f € A(p) and denote

:|>0,Z€U,(U,T€C,§€C*). (19)

A 2
o MY () £(2)|
(p,m) 2= MR8 () £ ()|

D i pm (0,7,8) f(2) = +

r e () ()]

8(p,m)z]* [MT# 2 (m) £ ()|

M3:17u+1,n+1,p(m)f(z)
2(]9 —m — ,u) MA’“’"’p(m)f(z) -
0,z

+ s +¢

Mot 222 (m) £ (2)
—(p—m—-p—1) Méf’“ﬂ’”“’p(m)f(z) —(p—m—-p+1)|, z€U. (20)
If
2 2q'(2)
(I)/\,,Lt,n,p,m (0-7 T, 5) f(Z) = UQ(Z) + Tq (Z) +£ q(z) y 2 € Ua (21>
then
Y 2
MR (m) £(2)]
<q(2), z€ U,
B(p, m)zr—m | Mp £ (m) £ (2)|
and q is the best dominant of (21).
Proof. Let
A s7)5P 2
MY (m) £(2)]
p(z) - A1pu+1n+1,p , 2 el
8(p, m) 2= M0 (m) £ ()|
We have
D) _ MpZH T (m) £(2)
=2(p—m—p)— = -
p(2) Mgz (m) f(2)

Mg /2720 (m) f (2)

—(p—m—pu—1) Mé\:l,uﬂz’?“’p(m)f(z) -

p—m—pu+1), zeU.

Now we apply Lemma 1 with (w) = cw+7w? and ¢(w) = ﬁ Clearly, # is analytic in C, ¢ is
analytic in C* and that p(w) # 0 for w € C*. Also, let ¢(2) = 2¢'(2)p(q(2)) = {ZZES), zeU,
and h(z) = oq(z) + 7¢*(2) + 5%, z € U. Since 1(0) = 0, ¥’(0) # 0, and

2q"(z)  2q'(2)
7(z)  q(2)

Re(l—i— )>O,z€U,
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implies that v is starlike in U and by the assumption (19) we have

zh (2) o 2T 2q"(z)  z2q(2)
Re =Re |1+ —q(2) + —¢q — >0, zeU.
o[ A R
Therefore, according to Lemma 1, the subordination (21) implies p < ¢ and ¢ is the best
dominant. O

Using similar arguments like in the proof of Theorem 3, we obtain the following theorem.

Theorem 4. Let q be convex in U with ¢(0) = 1, q(z) # 0 for all z € U and Rey > 0,
x € C*. For f € A(p) denote

Um0 F(2) [z
p,m 7) = "
AmrpmiX d(p, m)zp—m [MSE’HMHW(m)ﬂZ)}

Mt () £(2)
1+2x(p—m —p) N ()
0,z

X

—Xx(p—m—p— 1)M(3\:2’M+2’n+2’p(m)f(z) —xp—m—-—p+1)|,2z€U (22)
M (m) £(2) o
If
U o () f(2) < q(2) + x24'(2), 2 €U, (23)
then

M) f(2)]
S, m)zrm [ M ) £ ()

<q(2), z €U,

and q is the best dominant of (23).

Taking m = 0 in Theorem 4 we obtain the following result of Amsheri and Zharkova |3,
Theorem 2.4]:

Corollary 8. Let g be convex in U with q(0) = 1, q(z) # 0 for all z € U and Rex > 0,
x € C*, and denote

‘I]A,u,mp(X) = W mp0(X)- (24)
If f € A(p) and B
Ve () f(2) < a(2) + x2¢'(2), 2 €T, (25)
then )
(MO £(2)]
<q(z), z€ U,

P [Mézl,uﬂ,nﬂ,p (Z)]

and q is the best dominant of (25).
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3. Superordination results.

Theorem 5. Let ¢ be analytic and univalent function in U with ¢(0) = 1, ¢(z) # 0 for all
ze U, % be starlike univalent in U, and assume that

Re {?q(z) + 2%(]2(2)] >0, zeU,(B,7y€C, (€C). (26)
For f € A(p) suppose that
M2 (m) £ (2)
U7 T ) )

€ Hlq(0),1]N Q

and suppose that Qy ,pom (8,7,€) f defined by (7) is univalent in U. If f satisfies the
following superordination

2q' (2
B0(:) 496 + 2D <y (3,2, F(2), 2 € 1, 27)
then \
Mg 2™ (m) f ()
q(2) < )\+1,D/;+1,77+1,p , 2 €U,
MO,Z (m)f(z)
and q is the best subordinant of (27).
Proof. Let
M HP
-

Z) = ,
p( ) Ma\:l,p-{—l,n—l—l,p(m)f(z)

We apply Lemma 2 with 0(w) = fw+~yw? and ¢(w) = % Clearly, 6 is analytic in C, ¢ is
analytic in C* and that ¢(w) # 0 for w € C*. Letting ¥(z) = 2¢'(2)¢(q(2)) = (Zg;ij), z e,
the condition

2q"(z) _ 2¢'(2)
¢(z)  q(2)
implies that v is a starlike function in U and by the assumption (26) we have

0/<Q(2))_ € E z 2122 z
¢M@»_ng“>+CQ(ﬂ>Q e U.

Thus, from Lemma 2 the subordination (27) implies ¢ < p and ¢ best subordinant of (27). [

Re(1+ )>O,z€U,

Re

Using similar arguments to the proof of Theorem 5, we obtain the following theorem:

Theorem 6. Let g be an analytic and convex function in U with q(0) = 1, q(z) # 0 for all
z €U, and Rev > 0, ¥ € C*. For f € A(p) suppose that

MR () )
M ) £ ()

€ H[q(0),1]NQ

and suppose that Ay ., »m(0)f defined by (15) is univalent in U. If
q(2) + 924 (2) < Ay pnpm(9)f(2), z €U, (28)
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then
M (m) £ (2)

2 e U,

and q is the best subordinant of (28).

Taking m = 0 in Theorem 5 we obtain the following result of Amsheri and Zharkova |3,
Theorem 2.2|.

Corollary 9. Let g be an analytic and convex function in U with q(0) = 1, q(z) # 0 for all
2z €U, and Red > 0, 9 € C*. For f € A(p) suppose that

)y M)
M8+1,u+1,77+1,p (Z)

32

€ Hlq(0),1]Nn Q

and suppose that ﬁ)\%n,p(ﬁ)f defined by (17) is univalent in U. If
1(2) + 924/ (2) < Bayuna(D)S(2), 2 €U, (20)

then
MYE f(2)

MS:’Z'LM-FLH-FLP‘]C(Z)

and q is the best subordinant of (29).

q(z) <

, z €U,

Using arguments similar to that in the proof of Theorem 5 we obtain the following two
theorems:

Theorem 7. Let g be analytic and univalent function in U with q(0) = 1, ¢(z) # 0 for all
2 €U and 222 be starlike univalent in U, such that

a(2)
Re Eq(z) + 2?7(]2(2)] >0, z€U. (30)
For f € A(p) suppose that
2
MY (m) £(2)|

07 € H[q(0),1] N Q.

8(p, m) 2= M T8 (m) £ ()|

and suppose that @y, »m (0,7,€) f defined by (20) is univalent in U. If

oq(z) +7¢*(2) + §qu£i§) < Qo (0,7,8) f(2), z€ U, (o,7€C, £€C) (31)
then )
M (m) £ ()|
q(z) < , z€ U,

(p, m)zrm [METH T () £ ()|

and q is the best subordinant of (31).
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Theorem 8. Let g be an analytic and convex function in U with ¢(0) = 1, q(z) # 0 for all
z €U, and Rey >0, x € C*. For f € A(p) suppose that

12 () ()]
(p,m)zr=m MG () ()|

0 # € H[q(0),1]Nn Q

and suppose ¥y .. »m(X)f defined by (22) is univalent in U. If

9(2) + x2¢'(2) < Urpnpm(X)f(2), 2 €T, (32)

then )
MR (m) £(2)
(p,m)zr = | MG () f(2)|

q(z) < , z€U,

and q is the best subordinant of (32).

Taking m = 0 in Theorem 7 we obtain the following result due to Amsheri and Zharkova
[3, Theorem 2.5]:

Corollary 10. Let ¢ be analytic and convex function in U with ¢(0) = 1, ¢(z) # 0 for all
z €U, and Rey >0, x € C*. For f € A(p) suppose that

[y f()]

p |:M8’erl,,u+1,n+1,p (z)]

0 # € Hq(0),1] N Q

and suppose that \T//\7M7n7p(x)f defined by (24) is univalent in U. If

q(2) + x2d'(2) < Uy ,np(X)f(2), 2 €T, (33)

then )
ML ()
P [M(/}:Luﬂ,nﬂ,pf(z)]

q(z) < , z €U,

and q is the best subordinant of (33).

4. Sandwich results. Combining Theorem 1 and Theorem 5 we obtain the following
sandwich-type theorem.

Theorem 9. Let ¢; and go be univalent functions in U with ¢,(0) = ¢2(0) = 1, such that

¢1(2) #0, go(2) # 0 for all z € U. Assume that qulll((Z? and zqqf((;)) are starlike univalent in U,

and (6) and (26) hold for qo and g1, respectively. For f € A(p) suppose that

o MR (m)f(2)
7& MS:LMHMHJJ(

e H[1,1]NQ

3
=

2)
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and suppose that Q) ,.n»m (8,7, C) f defined by (7) is univalent in U. If

/

/BQ1 (Z) + fyq%(z> + gzqqll(iz)) < Q/\,u,n,p,m (67 7, C) f(Z) =

<ﬁq2(z)+7q§(z)+§%, zelU, (B,veC, (e (34)
then NP
02 < o "(m)f(z) < ga(2), 2 €U,

My ) (2)

and ¢, and gy are respectively the best subordinant and best dominant of (34).
Combining Theorem 2 and Theorem 6 we obtain the following sandwich-type result:

Theorem 10. Let ¢, and ¢ be convex functions in U with ¢;(0) = ¢2(0) = 1 such that
q1(z) # 0, q2(2) # 0 for all z € U, and assume that Rev > 0 9 € C*. For f € A(p) suppose
that
o ML)
ML ) £ (2)
)

is univalent in U. If

e H[1,1]NnQ

m

and suppose that Ay ., pm(0)f defined by (15
01(2) +02¢1(2) < Dm0 f(2) < @2(2) +92¢5(2), z €T, (35)

then
Mg (m) f(2)

N R ) el

q(z) <

and q; and ¢y are respectively the best subordinant and best dominant of (35).

Remark 3. Taking m = 0 in Theorem 10 we obtain the result of Amsheri and Zharkova |3,
Theorem 2.3|.

Combining Theorem 3 and Theorem 7 we obtain the following sandwich-type result:

Theorem 11. Let ¢, and go be univalent functions in U with ¢1(0) = ¢2(0) = 1 such that

¢1(2) # 0, go(2) # 0 for all z € U. Assume that Zqzll(zz)) and Zqzé((zz)) are starlike univalent in U,

and (19) and (30) hold for g, and ¢y, respectively. For f € A(p) suppose that

M (m) f(2)]

0
7 §(p,m)zp—m [Mgzl’“ﬂ’nﬂ’p(m)f(z)}

e H[1,1]NQ

and suppose that @y, p,m (0,7,§) f defined by (20) is univalent in U. If

2i(2)
¢(2)
2q5(2)
G2(2)

Jql(Z) + qu(z) + f < CI))\,,u,n,p,m (Uu T, 5) f(Z) =

<oq(2) + T (2) + € ,2€U, (o,7€C, £eC") (36)
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then ,
M () £ ()|

(p, m)zp=m MM () £ ()|

G (z) < < q(z2), z€ T,

and ¢, and gy are respectively the best subordinant and best dominant of (36).
Combining Theorem 4 and Theorem 8 we obtain the following sandwich-type theorem:

Theorem 12. Let ¢; and g, be convex functions in U with ¢;(0) = ¢2(0) = 1 such that
¢1(z) # 0, g2(2) # 0 for all z € U, and assume that Re x > 0, ¥ € C*. For f € A(p) suppose
that

() (2)]

e H[1,1]NQ
(p,m)zrm MM () £ (2)|

0 #

and suppose that Wy, m(X)f defined by (22) is univalent in U. If

q1(2) +92¢1(2) < Up pnpm(X)[(2) < g2(2) + V2¢5(2), z €U, (37)

then )
MY () £ ()|
B(p,m)zr=m | MG () ()|

Q(z) < < q2(2), z €U,

and ¢, and qy are respectively the best subordinant and best dominant of (37).

Remark 4. (i) Taking m = 0 in Theorem 12 we obtain the result due to Amsheri and
Zharkova;

(ii) Putting A = p in the above theorems we obtain new sandwich results for the operator
D?(m) defined by (4).
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