Intertwining maps for the Weitzenbock and Chebyshev derivations

Author
L. Bedratyuk, N. Lunio
Khmelnytsky National University, Khmelnytsky, Ukraine
Abstract
The notions of Chebyshev derivations of the first and the second kind are presented. Explicit forms of the corresponding intertwining maps are found.
Keywords
Chebyshev derivation; intertwining map; Appel polynomial; recurrence equation; Weitzenbock derivation
DOI
doi:10.15330/ms.49.1.3-12
Reference
1. L. Bedratyuk, Semi-invariants of binary forms and identities for Bernoulli, Euler and Hermite polynomials, Acta Arith., 151 (2012), 361-376.

2. S. Roman, G.-C. Rota, The Umbral Calculus, Advances in Mathematics, 27 (1978), no.2, 95-188.

3. L. Bedratyuk, Kernels of derivations of polynomial rings and Casimir elements, Ukrainian Math. Journal, 62 (2010), no.4, 435-452.

4. L. Bedratyuk, Weitzenbock derivations and the classical invariant theory I, Serdica Math. J., 36 (2010), no.2, 99-120.

5. L. Bedratyuk, Derivations and Identitites for Fibonacci and Lucas Polynomials, Fibonacci Quart., 51 (2013), no.4, 351-366.

6. L. Bedratyuk, Derivations and identities for Kravchuk polynomials, Ukr. Math. J., 65 (2014), no.12, 1755-1773.

7. L. Fox, I.B. Parker, Chebyshev Polynomials in Numerical Analisys, Oxford Univercity Press, London, 1968.

8. H. Prodinger, Representing derivatives of Chebyshev polynomials by Chebyshev polynomials and related questions, Open Math., 15 (2017), 1156-1160.

Pages
3-12
Volume
49
Issue
1
Year
2018
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue