Intertwining maps for the Weitzenbock and Chebyshev derivations |
|
Author |
bedratyuk@ief.tup.km.ua
Khmelnytsky National University, Khmelnytsky, Ukraine
|
Abstract |
The notions of Chebyshev derivations of the first and the second kind are presented. Explicit
forms of the corresponding intertwining maps are found.
|
Keywords |
Chebyshev derivation; intertwining map; Appel polynomial; recurrence equation; Weitzenbock
derivation
|
DOI |
doi:10.15330/ms.49.1.3-12
|
Reference |
1. L. Bedratyuk, Semi-invariants of binary forms and identities for Bernoulli, Euler and Hermite polynomials, Acta Arith., 151 (2012), 361-376.
2. S. Roman, G.-C. Rota, The Umbral Calculus, Advances in Mathematics, 27 (1978), no.2, 95-188. 3. L. Bedratyuk, Kernels of derivations of polynomial rings and Casimir elements, Ukrainian Math. Journal, 62 (2010), no.4, 435-452. 4. L. Bedratyuk, Weitzenbock derivations and the classical invariant theory I, Serdica Math. J., 36 (2010), no.2, 99-120. 5. L. Bedratyuk, Derivations and Identitites for Fibonacci and Lucas Polynomials, Fibonacci Quart., 51 (2013), no.4, 351-366. 6. L. Bedratyuk, Derivations and identities for Kravchuk polynomials, Ukr. Math. J., 65 (2014), no.12, 1755-1773. 7. L. Fox, I.B. Parker, Chebyshev Polynomials in Numerical Analisys, Oxford Univercity Press, London, 1968. 8. H. Prodinger, Representing derivatives of Chebyshev polynomials by Chebyshev polynomials and related questions, Open Math., 15 (2017), 1156-1160. |
Pages |
3-12
|
Volume |
49
|
Issue |
1
|
Year |
2018
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |