Wimans type inequality for multiple power series in an unbounded cylinder domain

Author
A. O. Kuryliak1, V. L. Tsvigun2
Ivan Franko National University of Lviv, Lviv, Ukraine
Abstract
In this paper we prove some analogues of Wimans inequality for analytic $f(z)$ and random analytic functions $f(z,t)$ on $\mathbb T=\mathbb D^l\times\mathbb C^{p-l}$, $l\in\mathbb N,\ 1\leq l\le p$, $I=\{1,\ldots, l\},\ J=\{l+1,\ldots, p\}$ of the form $f(z)=\sum_{\|n\|=0}^{+\infty}a_nz^n$, $f(z,t)=\sum_{\|n\|=0}^{+\infty}a_nZ_n(t)z^n$ respectively. Here $Z=(Z_n)$ is a multiplicative system of random variables on the Steinhaus probability space, uniformly bounded by the number 1. In particular, there are proved the following statements: For every $\delta>0$ there exist sets $E_1=E_1(\delta,f),\ E_2=E_2(\delta,f)\subset [0,1)^l\times(1,+\infty)^{p-l}$ of asymptotically finite logarithmic measure, such that the inequalities \begin{gather*} M_f(r)\leq\mu_f(r)\prod_{i\in I}\frac{1}{(1-r_i)^{1+\delta}}\ln^{{p/2}+\delta}\Bigl(\mu_f(r)\prod_{i\in I}\frac{1}{1-r_i}\Bigl)\Bigl (\prod_{j\in J}\ln r_j\Bigl)^{p+\delta},\\ M_f(r,t)\leq\mu_f(r)\prod_{i\in I}\frac{1}{(1-r_i)^{1/2+\delta}}\ln^{{p/4}+\delta}\Bigl(\mu_f(r)\prod_{i\in I}\frac{1}{1-r_i}\Bigl)\Bigl (\prod_{j\in J}\ln r_j\Bigl)^{ p/2+\delta}. \end{gather*} hold for all $r\in T\setminus E_1$ and for all $r\in T\setminus E_2$ a.s. in $t$, respectively. Also is proved sharpness of the obtained inequalities.
Keywords
maximum modulus; maximal term; multiple power series; Wimans type inequality
DOI
doi:10.15330/ms.49.1.29-51
Reference
1. Wiman A. Uber dem Zusammenhang zwischen dem Maximalbetrage einer analytischen Function und dem grossten Gliede der zugehorigen Taylorilbr schen Reihe// Acta Math. - 1914. - V.37. - P. 305-326.

2. Polya G., Szego G. Aufgaben und Lehrsatze aus der Analysis, V.2. - Berlin, Springer, 1925.

3. Valiron G. Fonctions analytiques. . Paris: Press. Univer. de France, 1954.

4. Wittich H. Neuere Untersuchungen uber eindeutige analytische Funktionen. - Berlin-Gottingen- Heidelberg: Springer, 1955. - 164 s.

5. Goldberg A.A., Levin B.Y., Ostrovskii I.V., Entire and meromorphic functions. - Itogi Nauki i Tekhniki. Seriya VINITI. - 1990. - V.85. - P. 5-186. (in Russian)

6. Skaskiv O.B., Filevych P.V., On the size of an exceptional set in the Wiman theorem, Mat. Stud. - 1999. - V.12, 1. - P.31-36. (in Ukrainian)

7. Skaskiv O.B., Zrum O.V. On an exeptional set in the Wiman inequalities for entire functions, Mat. Stud. - 2004. - V.21, 1. - 13-24. (in Ukrainian)

8. Skaskiv O.B., Bandura A.I., Asymptotic estimates of positive integrals and entire functions. - Lviv. Ivano-Frankivsk: LNU-INFTUNG, 2015. - 108 p. (in Ukrainian)

9. Erd.os P., Renyi A. On random entire function// Zastosowania mat. - 1969. - V.10. - P. 47-55.

10. Steele J.M., Sharper Wiman inequality for entire functions with rapidly oscillating coefficients// J. Math. Anal. and Appl. - 1987. - V.123. - P. 550-558.

11. K.ovari T. On the maximum modulus and maximal term of functions analytic in the unit disc// J. London Math. Soc. - 1966. - V.41. - P. 129-137.

12. Suleymanov N.M. Wiman-Valirons type inequalities for power series with bounded radii of convergence and its sharpness// DAN SSSR. - 1980. - V.253, 4. - P. 822-824. (in Russian)

13. Skaskiv O.B., Kuryliak A.O. Direct analogues of Wimanfs inequality for analytic functions in the unit disk// Carpathian Math. Publ. - 2010. - V.2, 1. - P. 109-118. (in Ukrainian)

14. Gopala Krishna J., Nagaraja Rao I.H. Generalised inverse and probability techniques and some fundamental growth theorems in Ck// J. Indian Math. Soc. - 1977. - V.41. - P. 203-219.

15. Fenton P.C. Wiman-Valiron theory in two variables// Trans. Amer. Math. Soc. - 1995. - V.347, 11. - P. 4403-4412.

16. Kuryliak A.O., Skaskiv O.B. Wimans type inequalities without exceptional sets for random entire functions of several variables// Mat. Stud. - 2012. - V.38, 1. - P. 35-50.

17. Schumitzky A. Wiman-Valiron theory for functions of several complex variables. - Ph. D. Thesis: Cornel. Univ., 1965.

18. Skaskiv O.B., Zrum O.V. Wimanfs type inequality for entire functions of two complex variables with rapidly oscilating coefficient// Mat. metods and fys.-mekh. polya. - 2005. - V.48, 4. - P. 78-87. (in Ukrainian)

19. Skaskiv O.B., Zrum O.V. On inprovement of Fentons inequality for entire functions of two complex variables// Math. Bull. Shevchenko Sci. Soc. - 2006. - V.3. - P. 56-68. (in Ukrainian)

20. Skaskiv O.B., Trakalo O.M. On classical Wimans inequality for multiple entire Dirichlet series// Mat. metods and fys.-mekh. polya. - 2000. - V.43, 3. - P. 34-39. (in Ukrainian)

21. Zrum O.V., Skaskiv O.B. On Wimans inequality for random entire functions of two variables// Mat. Stud. - 2005. - V.23, 2. - P. 149-160. (in Ukrainian)

22. Kuryliak A.O., Skaskiv O.B. Wimans type inequalities without exceptional sets for random entire functions of several variables// Mat. Stud. - 2012. - V.38, 1. - P. 35-50.

23. Kuryliak A.O., Skaskiv O.B., Zrum O.V. Levys phenomenon for entire functions of several variables// Ufa Math. J. - 2014. - V.6, 2 - P. 118-127.

24. Kuryliak A.O., Skaskiv O.B., Skaskiv S.R. Levys phenomenon for analytic functions in the polydisc// ArXiv:160204756v1 [math.CV] 15 Feb 2016. - 14 p.

25. Kuryliak A.O., Shapovalovska L.O., Skaskiv O.B. Wimans type inequality for analytic functions in the polydisc// Ukr. Mat. J. - 2016. - V.68. - P. 78-86.

26. Kuryliak A.O., Skaskiv O.B., Skaskiv S.R. Analogues of Wimans inequality and Levys phenomenon for analytic functions in bidisc// Buk. Mat. J. - 2015. - V.3, 3-4. - P. 102-110. (in Ukrainian)

27. Kuryliak A.O., Shapovalovska L.O., Skaskiv O.B. Wimans type inequality for some double power series// Mat. Stud. - 2013. - V.39, 2. - P. 134-141.

28. Kuryliak A.O., Shapovalovska L.O. Wimans type inequality for entire functions of several complex varibles with rapidly oscillating coefficients// Mat. Stud. - 2015. - V.43, 1. - P. 16-26.

29. Kuryliak A., Skaskiv O., Tsvigun V. Levys phenomenon for analytic functions in $\mathbb{D}\times\mathbb{C}$// Mat. Stud. - 2016. - V.46, 2. - P. 121-129.

30. Levy P. Sur la croissance de fonctions entiere // Bull. Soc. Math. France. - 1930. - V.58. - P. 29-59; P. 127-149.

31. P.V. Filevych. Some classes of entire functions in which the Wiman-Valiron inequality can be almost certainly improved// Mat. Stud. - 1996. - V.6. - P. 59-66. (in Ukrainian)

32. Filevych P.V. Wiman-Valiron type inequalities for entire and random entire functions of finite logarithmic order// Sib. Mat. Zhurn. - 2003. - V.42, 3. - P. 683-694. (in Russian) English translation in: Siberian Math. J. - 2003. - V.42, 3. - P. 579-586.

33. Kuryliak A.O., Skaskiv O.B. Ineguality of Wiman type for analytic in a disc functions and the Baire categories// Nauk. Visn. Cherniv. Natiomal Univ. Ser.: Mat. - 2011. - V.1, 4. - P. 73-79. (in Ukrainian)

34. Kuryliak A.O., Skaskiv O.B., Chyzhykov I.E. Baire categories and Wimans inequality for analytic functions// Bull. Soc. Sc. et des letters de Lodz. 2012. V.62, 3. P. 1733.

35. Godwin H.J. On generalizations of Tchebycheffs inequality// J. Amer Stat. Assoc. 1955. V.50. P. 923945.

36. Savage I.R. Probability inequalities of the Tchebycheff type// J. Research National Bureau of Stand. 1961. V.65B, 3. P. 211222.

Pages
29-51
Volume
49
Issue
1
Year
2018
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue