Wijsman rough convergence of triple sequences |
|
Author |
nsmaths@yahoo.com; aesi23@hotmail.com
Department of Mathematics, SASTRA University, Thanjavur, India; Department of Mathematics, Adiyaman University, Turkey
|
Abstract |
In this paper we define and study the Wijsman rough convergence of triple sequences, the
set of Wijsman rough limit points of a triple sequence. Also we investigate the relations between
the set of cluster points and the set of Wijsman rough limit points of a triple sequence.
|
Keywords |
triple sequences; Wijsman rough convergence; rough limit points
|
DOI |
doi:10.15330/ms.48.2.171-179
|
Reference |
1. S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optimiz, 29 (2008), ¹3–4, 291–303.
2. S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optimiz, 29 (2008), ¹3–4, 283–290. 3. A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures, 1 (2014), ¹2, 16–25. 4. A. Esi, M. Necdet Catalbas, Almost convergence of triple sequences, Global J. Math. Anal., 2 (2014), ¹1, 6–10. 5. A. Esi, E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci., 9 (2015), ¹5, 2529–2534. 6. A.J. Datta, A. Esi, B.C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal., 4 (2013), ¹2, 16–22. 7. S. Debnath, B. Sarma, B.C. Das, Some generalized triple sequence spaces of real numbers, J. Nonlinear Anal Optimiz, 6 (2015), ¹1, 71–79. 8. E. Dundar, C. Cakan, Rough I. convergence, Demonstratio Mathematica, accepted. 9. H.X. Phu, Rough convergence in normed linear spaces , Numer. Funct. Anal. Optimiz, 22 (2001), 199–222. 10. H.X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optimiz, 23, (2002), 139–146. 11. H.X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz, 24, (2003), 285–301. 12. A. Sahiner, M. Gurdal, F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8 (2007), ¹2, 49–55. 13. A. Sahiner, B.C. Tripathy, Some I related properties of triple sequences, Selcuk J. Appl. Math., 9 (2008), ¹2, 9–18. 14. N. Subramanian, A. Esi, The generalized tripled difference of 3 sequence spaces, Global J. Math. Anal., 3 (2015), ¹2, 54–60. |
Pages |
171-179
|
Volume |
48
|
Issue |
2
|
Year |
2017
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |