Automorphism groups of superextensions of groups |
|
Author |
t.o.banakh@gmail.com; vgavrylkiv@gmail.com
Ivan Franko National University of Lviv, Ukraine, and
Institute of Mathematics, Jan Kochanowski University in Kielce, Poland; Faculty of Mathematics and Computer Science
Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
|
Abstract |
A family $\mathcal L$ of
subsets of a set $X$ is called {\em linked} if $A\cap
B\ne\emptyset$ for all $A,B\in\mathcal L$. A linked family
$\mathcal M$ is {\em maximal linked} if
$\mathcal M$ coincides with each linked family $\mathcal L$ on
$X$ that contains $\mathcal M$. The superextension
$\lambda(X)$ consists of all maximal linked families on $X$. Any
associative binary operation $:X\times X \to X$ can be extended
to an associative binary operation $:
\lambda(X)\times\lambda(X)\to\lambda(X)$. In the
paper we study isomorphisms of superextensions of groups and prove that
two groups are isomorphic if and only if their superextensions are isomorphic.
Also we describe the automorphism groups of superextensions of all groups
of order $\leq 5$.
|
Keywords |
group; semigroup; maximal linked family; superextension; automorphism group
|
DOI |
doi:10.15330/ms.48.2.134-142
|
Reference |
1. T. Banakh, V. Gavrylkiv, Algebra in superextension of groups, II: cancelativity and centers, Algebra
Discrete Math., 4 (2008), 1–14.
2. T. Banakh, V. Gavrylkiv, Algebra in superextension of groups: minimal left ideals, Mat. Stud., 31 (2009), ¹2, 142–148. 3. T. Banakh, V. Gavrylkiv, Extending binary operations to functor-spaces, Carpathian Math. Publ., 1 (2009), ¹2, 113–126. 4. T. Banakh, V. Gavrylkiv, Algebra in the superextensions of twinic groups, Dissertationes Math., 473 (2010), 3-74. 5. T. Banakh, V. Gavrylkiv, Algebra in superextensions of semilattices, Algebra Discrete Math., 13 (2012), ¹1, 26-42. 6. T. Banakh, V. Gavrylkiv, Algebra in superextensions of inverse semigroups, Algebra Discrete Math., 13 (2012), ¹2, 147-168. 7. T. Banakh, V. Gavrylkiv, Characterizing semigroups with commutative superextensions, Algebra Discrete Math., 17 (2014), ¹2, 161-192. 8. T. Banakh, V. Gavrylkiv, On structure of the semigroups of k-linked upfamilies on groups, Asian- European J. Math., 10 (2017), ¹4, 15 p. 9. T. Banakh, V. Gavrylkiv, O. Nykyforchyn, Algebra in superextensions of groups, I: zeros and commutativity, Algebra Discrete Math., 3 (2008), 1-29. 10. A.E. Brouwer, C.F. Mills, W.H. Mills, A. Verbeek, Counting families of mutually intesecting sets, Electron. J. Combin., 20 (2013), ¹2, 8 p. 11. V. Gavrylkiv, The spaces of inclusion hyperspaces over noncompact spaces, Mat. Stud., 28 (2007), ¹1, 92-110. 12. V. Gavrylkiv, Right-topological semigroup operations on inclusion hyperspaces, Mat. Stud., 29 (2008), ¹1, 18-34. 13. V. Gavrylkiv, On representation of semigroups of inclusion hyperspaces, Carpathian Math. Publ., 2 (2010), ¹1, 24-34. 14. V. Gavrylkiv, Superextensions of cyclic semigroups, Carpathian Math. Publ., 5 (2013), ¹1, 36-43. 15. V. Gavrylkiv, Semigroups of centered upfamilies on finite monogenic semigroups, J. Algebra, Number Theory: Adv. App., 16 (2016), ¹2, 71-84. 16. V. Gavrylkiv, Semigroups of centered upfamilies on groups, Lobachevskii J. Math., 38 (2017), ¹3, 420-428. 17. V. Gavrylkiv, Superextensions of three-element semigroups, Carpathian Math. Publ., 9 (2017), ¹1, 28-36. 18. V. Gavrylkiv, On the automorphism group of the superextension of a semigroup, Mat. Stud., 48 (2017), ¹1, 3-13. 19. N. Hindman, D. Strauss, Algebra in the Stone-.Cech compactification, de Gruyter, Berlin, New York, 1998. 20. J.M. Howie, Fundamentals of semigroup theory, The Clarendon Press Oxford University Press, New York, 1995. 21. J. van Mill, Supercompactness and Wallman spaces, Mathematical Centre Tracts, V.85 Amsterdam, 1977. 22. D. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, V.80 (Springer-Verlag, New York, 1996). 23. A. Teleiko, M. Zarichnyi, Categorical Topology of Compact Hausdofff Spaces, V.5, VNTL, Lviv, 1999. 24. A. Verbeek, Superextensions of topological spaces, Mathematical Centre Tracts, V.41, Amsterdam, 1972. |
Pages |
134-142
|
Volume |
48
|
Issue |
2
|
Year |
2017
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |