The analogue of Bernstein’s inverse theorem for the one class of the space of sequences (in Ukrainian) |
|
Author |
galja.vlshin@gmail.com; v.maslyuchenko@gmail.com
Chernivtsi National University, Chernivtsi, Ukraine
|
Abstract |
We introduce the space of numerical sequences $l_{\mathbf{p}}=\{{x=(\xi_{k})_{k=1}^{\infty}\colon} |x|=\sum\nolimits_{k=1}^{\infty}|{\xi_{k}}|^{p_k}\le+\infty\}$ with a quasi-norm $|\cdot|$ for an every sequence $\mathbf{p}=(p_k)_{k=1}^{\infty}$ of numbers $p_k$ from the interval $(0,1]$ and
we prove the analogue of the inverse of Bernstein's theorem for this space.
|
Keywords |
inverse Bernstein’s theorem; quasi-norm; quasi-normed space; bounded balls; sequence of finite
dimensional linear subspaces
|
DOI |
doi:10.15330/ms.47.2.160-168
|
Reference |
1. Bernstein S.N. Sur le probleme inverse de la theorie de la meilleure approximation des fonctions continues//
Comp. Rend. – 1938. – V.206. – P. 1520–1523.
2. Bernstein S.N. On an inverse problem of approximation theory// Collected works in 4 volumes. – Ě.: Publ. house of the Academy of Sciences of the USSR, 1954. – V.2. – P. 292–294. (in Russian) 3. Nikolsky S.M. Approximation by polynomials of functions of a real variable// Mathematics in the USSR for 30 years. –M.-L.: GITTL, 1948. – P. 288–318. (in Russian) 4. Nesterenko O.N. The inverse problem of paproximation and evaluation of norms of entire functions of exponential type and polynomials: dis ... candidate of physical and mathematical sciences. Sciences: 01.01.01 - Mathematical analysis. – Kiev, 2006. – 148 p. (in Ukrainian) 5. Voloshyn H.A., Maslyuchenko V.K. The generalization of one Bernstein’s theorem// Mat. Visn. NTSh. – 2009. – V.6. – P. 62–72. (in Ukrainian) 6. Voloshyn H.A. Separately continuous functions and the theory of approximations: dis ... candidate of physical and mathematical sciences. Sciences: 01.01.01 – Mathematical analysis. – Chernivtsi, 2012. – 138 p. (in Ukrainian) 7. Orlicz W. Uber konjugierte Exponentenfolgen// Stud. Math. – 1931. – V.3. – Đ. 200–211. 8. Maligranda L. Hidegoro Nakano (1909-1974) – on the centenary of his birth// Proceedings of the International Symposium on Banach and Function Spaces IV (Kitakyushu, Japan, 2009). – 2011. – P. 99–171. 9. Maslyuchenko V.K. The first types of topological vector spaces. – Chernivtsi: Ruta, 2002. – 72 p. (in Ukrainian) 10. Maslyuchenko V.K. Linear Continuous Operators. – Chernivtsi: Ruta, 2002. – 72 p. (in Ukrainian) 11. Maslyuchenko V.K. Lectures on functional analysis. Ch.1.Metric and normalized spaces. – Chernivtsi: ChNU Ruta, 2010. – 184p. (in Ukrainian) 12. Kurosh Ŕ.Ň. The course of Higher Algebra. – Ě.: Science, 1971. – 432p. (in Russian) 13. Robertson A.P., Robertson W.G. Topological vector spaces. – M.: Peace, 1967. – 258 p. (in Russian) 14. Shefer H. Topological vector spaces. – M.: Peace, 1971. – 360 p. (in Russian) 15. Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis – Ě.: Science, 1989. – 624 p. (in Russian) |
Pages |
160-168
|
Volume |
47
|
Issue |
2
|
Year |
2017
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |