Cauchy, infinitesimals and ghosts of departed quantifiers

Author
J. Bair, P. Blaszczyk, R. Ely, V. Henry, V. Kanovei, K. U. Katz, M. G. Katz, T. Kudryk, S. S. Kutateladze, T. McGaffey, T. Mormann, D. M. Schaps, D. Sherry
HEC-ULG, University of Liege, 4000 Belgium; Institute of Mathematics, Pedagogical University of Cracow, Poland; Department of Mathematics, University of Idaho, Moscow, Russia; Department of Mathematics, University of Namur, Belgium; IPPI, Moscow, and MIIT, Moscow, Russia; Department of Mathematics, Bar Ilan University, Ramat Gan, Israel; Department of Mathematics, Bar Ilan University, Ramat Gan, Israel; Department of Mathematics, Lviv National University, Ukraine; Sobolev Institute of Mathematics, Novosibirsk State University, Russia; Rice University, US; Department of Logic and Philosophy of Science, University of the Basque Country UPV/EHU, Donostia San Sebastian, Spain; Department of Classical Studies, Bar Ilan University, Ramat Gan, Israel; Department of Philosophy, Northern Arizona University, Flagstaff, US
Abstract
Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson’s frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz’s distinction between assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robinson’s framework, while Leibniz’s law of homogeneity with the implied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide parallel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz’s infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Euler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infinite exponent. Such procedures have immediate hyperfinite analogues in Robinson’s framework, while in a Weierstrassian framework they can only be reinterpreted by means of paraphrases departing significantly from Euler’s own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson’s framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of departed quantifiers in his work. Cauchy’s procedures in the context of his 1853 sum theorem (for series of continuous functions) are more readily understood from the viewpoint of Robinson’s framework, where one can exploit tools such as the pointwise definition of the concept of uniform convergence. As case studies, we analyze the approaches of Craig Fraser and Jesper L¨utzen to Cauchy’s contributions to infinitesimal analysis, as well as Fraser’s approach toward Leibniz’s theoretical strategy in dealing with infinitesimals. The insights by philosophers Ian Hacking and others into the important roles of contextuality and contingency tend to undermine Fraser’s interpretive framework.
Keywords
historiography; infinitesimal; Latin model; butterfly model; law of continuity; ontology; practice; Cauchy; Leibniz
DOI
doi:10.15330/ms.47.2.115-144
Reference
1. Alling N., Conway's field of surreal numbers, Trans. Amer. Math. Soc., 287 (1985), no.1, 365-386.

2. Artin E., Schreier O., Algebraische Konstruktion reeller Korper, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Univeristat, Leipzig 5 (1926), p. 85-99. Reprinted in Serge Lang and John T. Tate (editors), The Collected Papers of Emil Artin, Addison-Wesley Publishing Company, Reeding, MA., 1965, p. 258-272.

3. Bair J., Blaszczyk P., Ely R., Henry V., Kanovei V., Katz K., Katz M., Kutateladze S., McGaffey T., Schaps D., Sherry D., Shnider S., Is mathematical history written by the victors? Notices of the American Mathematical Society, 60, no.7, 886-904.

4. Bair J., Blaszczyk P., Ely R., Henry V., Kanovei V., Katz K., Katz M., Kutateladze S., McGaffey T., Reeder P., Schaps D., Sherry D., Shnider S., Interpreting the infinitesimal mathematics of Leibniz and Euler, Journal for General Philosophy of Science, 48 (2017), no.2, 195-238.

5. Bair J., Katz M., Sherry D., Fermat's dilemma: Why did he keep mum on infinitesimals? and the European theological context, Foundations of Science (2018), to appear.

6. Barabashev A., In support of significant modernization of original mathematical texts (in defense of presentism), Philos. Math. (3), 5 (1997), no.1, 21-41.

7. Bascelli T., Bottazzi E., Herzberg F., Kanovei V., Katz K., Katz M., Nowik T., Sherry D., Shnider S., Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow, Notices of the American Mathematical Society, 61 (2014), no.8, 848-864.

8. Bascelli T., Blaszczyk P., Kanovei V., Katz K., Katz M., Schaps D., Sherry D., Leibniz vs Ishiguro: Closing a quarter-century of syncategoremania HOPOS: Journal of the Internatonal Society for the History of Philosophy of Science, 6 (2016), no.1, 117-147.

9. Bascelli T., Blaszczyk P., Kanovei V., Katz K., Katz M., Kutateladze S., Nowik T., Schaps D., Sherry D., Gregory's sixth operation Foundations of Science, see https://arxiv.org/abs/1612.05944

10. Bascelli T., Blaszczyk P., Borovik A., Kanovei V., Katz K., Katz M., Kutateladze S., McGaffey T., Schaps D., Sherry D., Cauchy's infinitesimals, his sum theorem, and foundational paradigms, Foundations of Science (2018), see https://arxiv.org/abs/1704.07723

11. Benacerraf P., What numbers could not be The Philosophical Review, 74 (1965), 47-73.

12. Blasjo V., On what has been called Leibniz's rigorous foundation of infinitesimal geometry by means of Riemannian sum, Historia Math., 44 (2017), no.2, 134-149.

13. Blaszczyk P., A note on Otto Holder's memoir; Die Axiome der Quantitat und die Lehre vom Mass, Annales Universitatis Paedagogicae Cracoviensis Studia ad Didacticam Mathematicae Pertinentia, V (2013), 129-142.

14. Blaszczyk P., A purely algebraic proof of the fundamental theorem of algebra, Annales Universitatis Paedagogicae Cracoviensis Studia ad Didacticam Mathematicae Pertinentia, VIII (2016), 5-21.

15. B laszczyk P., Katz M., Sherry D., Ten misconceptions from the history of analysis and their debunking Foundations of Science, 18 (2013), no.1, 43-74.

16. B laszczyk P., Kanovei V., Katz K., Katz M., Kudryk T., Mormann T., Sherry D., Is Leibnizian calculus embeddable in first order logic? Foundations of Science, 22 (2017), no.4, 717-731, see http://arxiv.org/abs/1605.03501.

17. Blaszczyk P., Kanovei V., Katz K., Katz M., Kutateladze S., Sherry D., Toward a history of mathematics focused on procedures Foundations of Science, 22 (2017), no.4, 763-783, see http://arxiv.org/abs/1609.04531.

18. Blaszczyk P., Kanovei V., Katz M., Sherry D., Controversies in the foundations of analysis: Comments on Schubring's Conflicts, Foundations of Science, 22 (2017), no.1, 125-140.

19. Bolzano B. Purely analytic proof of the theorem that between any two values which give results of opposite signs, there lies at least one real root of the equation, in S. Russ (ed.), The Mathematical Works of Bernard Bolzano, Oxford University Press, Oxford, 2004, 251-263.

20. Borovik A., Katz M., Who gave you the Cauchy.Weierstrass tale? The dual history of rigorous calculus, Foundations of Science, 17 (2012), no.3, 245-276.

21. Borsuk K., Szmielew W., Foundations of geometry: Euclidean and Bolyai.Lobachevskian geometry, projective geometry. Revised English translation. North-Holland Publishing, Amsterdam, Interscience Publishers, New York, 1960.

22. Boyer C., The concepts of the calculus, Hafner Publishing, 1949.

23. Cauchy A.L., Cours d’Analyse de L’Ecole Royale Polytechnique. Premi`ere Partie. Analyse algebrique, Imprimerie Royale, Paris, 1821.

24. Cauchy A.L., Resume des Lecons donnees `a l’Ecole Royale Polytechnique sur le Calcul Infinitesimal, Paris, Imprimerie Royale, 1823.

25. Cauchy A.L. Recherches sur l’equilibre et le mouvement interieur des corps solides ou fluides, elastiques ou non elastiques, Bulletin de la Soci´et´e philomatique, 9–13, 1823. Reprinted in Oeuvres compl`etes, Serie 2, V.2, 300–304.

26. Cauchy A.L. “Memoire sur la rectification des courbes et la quadrature des surfaces courbes.” Paris. Reprinted as Cauchy [27], (1832).

27. Cauchy A.L., Memoire sur la rectification des courbes et la quadrature des surfaces courbes, Mem. Acad. Sci. Paris, 22 (1850), 3–15. Reprinted in Oeuvres compl`etes, 1/II, Paris: Gauthier-Villars, (1908), 167–177.

28. Cauchy A.L., Note sur les series convergentes dont les divers termes sont des fonctions continues d’une variable reelle ou imaginaire, entre des limites donnees, Reprinted in Oeuvres compl`etes, Series 1, Paris: Gauthier–Villars, 12 (1990), 30–36.

29. Conway J. On numbers and games, London Mathematical Society Monographs, No. 6. Academic Press [Harcourt Brace Jovanovich, Publishers], London–New York, 1976.

30. De Risi V., The Development of Euclidean Axiomatics. The systems of principles and the foundations of mathematics in editions of the Elements from Antiquity to the Eighteenth Century, Archive for History of Exact Sciences, 70 (2016), no.6, 591–676.

31. Ehrlich P., The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes, Archive for History of Exact Sciences, 60, (2006), no.1, 1–121.

32. Ehrlich P., The absolute arithmetic continuum and the unification of all numbers great and small, Bull. Symbolic Logic, 18 (2012), no.1, 1–45.

33. Euler L., Introductio in Analysin Infinitorum, Tomus primus, SPb and Lausana, 1748.

34. Euler L., Introduction to analysis of the infinite. Book I, Translated from the Latin and with an introduction by J. Blanton. Springer-Verlag, New York, 1988 (translation of Euler [33]).

35. Ferraro G., Differentials and differential coefficients in the Eulerian foundations of the calculus, Historia Mathematica, 31 (2004), no.1, 34–61.

36. Ferraro G., Panza M., Lagrange’s theory of analytical functions and his ideal of purity of method, Archive for History of Exact Sciences, 66 (2012), no.2, 95–197.

37. Fisher G. Cauchy and the infinitely small, Historia Math, 5 (1978), no.3, 313–331.

38. Fletcher P., Hrbacek K., Kanovei V., Katz M., Lobry C., Sanders S., Approaches to analysis with infinitesimals following Robinson, Nelson, and others, Real Analysis Exchange, 42 (2017), no.2, 193–252.

39. Fraser C., Cauchy, In the New Dictionary of Scientific Biography, Scribners and Sons, 2 (2008), 75–79.

40. Fraser C., Nonstandard analysis, infinitesimals, and the history of calculus, A Delicate Balance: Global Perspectives on Innovation and Tradition in the History of Mathematics, D. Row & W. Horng, eds., Birkhauser, Springer, 2015, 25–49.

41. Fried M., The discipline of history and the ‘Modern consensus in the historiography of mathematics, J. Humanist. Math., 4 (2014), no.2, 124–136.

42. Gilain C., Cauchy et le cours d’analyse de l’Ecole polytechnique, With an editorial preface by Emmanuel Grison. Bull. Soc. Amis Bibl. ´Ecole Polytech., (1989), no.5.

43. Grabiner J., Is mathematical truth time-dependent?, Amer. Math. Monthly, 81 (1974), 354–365.

44. Gray J. A short life of Euler, BSHM Bulletin, 23 (2008), no.1, 1–12.

45. Grattan-Guinness I., The development of the foundations of mathematical analysis from Euler to Riemann, The MIT Press, Cambridge, Mass, London, 1970.

46. Grattan-Guinness I. The Mathematics of the Past: Distinguishing its History from our Heritage, Historia Mathematica, 31 (2004), 163–185.

47. Hacking I., Why is there philosophy of mathematics at all? Cambridge University Press, Cambridge, 2014.

48. Hankel H., Zur Geschichte der Mathematik in Alterthum und Mittelalter, Teubner, Leipzig, 1876.

49. Hartshorne R., Geometry: Euclid and beyond, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2000.

50. Heath T., Euclid. The Thirteen Books of The Elements, V.1–3, Dover, New York 1956 (reprint of the edition Cambridge University Press, Cambridge 1926, first edition 1908).

51. Hesse M.B., Forces and fields: The concept of action at a distance in the history of physics, Dover, Mineola, NY, 1962.

52. Hewitt E. Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc., 64 (1948), 45–99.

53. Hilbert D., Grundlagen der Geometrie, Festschrift zur Feier der Enth¨ullung des Gauss–Weber Denkmals in Gottingen, Teubner, Leipzig, 1899.

54. Hilbert D., Grundlagen der Geometrie, Teubner, Leipzig, 1903.

55. Ishiguro H., Leibniz’s philosophy of logic and language. Second edition, Cambridge University Press, Cambridge, 1990.

56. Kanovei V. The correctness of Euler’s method for the factorization of the sine function into an infinite product, Russian Mathematical Surveys, 43 (1988), 65–94.

57. Kanovei V., Katz K., Katz M., Mormann T., What makes a theory of infinitesimals useful? A view by Klein and Fraenkel, Journal of Humanistic Mathematics, 8 (2018), no.1 (to appear).

58. Kanovei V., Katz K., Katz M., Sherry D., Euler’s lute and Edwards’ oud., The Mathematical Intelligencer, 37 (2015), no.4, 48–51.

59. Katz K., Katz M., Cauchy’s continuum., Perspectives on Science, 19 (2011), no.4, 426–452.

60. Katz K., Katz M., A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography, Foundations of Science, 17 (2012), no.1, 51–89.

61. Katz K., Katz M., Stevin numbers and reality, Foundations of Science, 17 (2012), no.2, 109–123.

62. Katz M., Review of Fried [41], 2015, see http://www.ams.org/mathscinet-getitem?mr=3245163.

63. Katz M., Polev M., From Pythagoreans and Weierstrassians to true infinitesimal calculus, Journal of Humanistic Mathematics, 7 (2017), no.1, 87–104.

64. Katz M., Schaps D., Shnider S., Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond, Perspectives on Science, 21 (2013), no.3, 283–324.

65. Katz M., Sherry D., Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond., Erkenntnis, 78 (2013), no.3, 571–625.

66. Keisler H.J., Elementary Calculus: An Infinitesimal Approach. Second Edition, Prindle, Weber & Schimidt, Boston, 1986.

67. Knobloch E., Galileo and Leibniz: different approaches to infinity, Archive for History of Exact Sciences, 54 (1999), no.2, 87–99.

68. Knobloch E., Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums, Foundations of the formal sciences, 1 (Berlin, 1999), Synthese, 133 (2002), no.1–2, 59–73.

69. Lakatos I., History of Science and Its Rational Reconstructions, In PSA 1970. Boston Studies in the Philosophy of Science, vol. viii, edited by Roger C. Buck and Robert S. Cohen, 91–108. Dordrecht: D. Reidel, 1971.

70. Laugwitz D., Infinitely small quantities in Cauchy’s textbooks, Historia Mathematica, 14 (1987), 258– 274.

71. Laugwitz D., Definite Values of Infinite Sums: Aspects of the Foundations of Infinitesimal Analysis around 1820, Archive for the History of Exact Sciences, 39 (1989), 195–245.

72. Lawvere F.W., Foundations and applications: axiomatization and education, New programs and open problems in the foundation of mathematics, (Paris, 2000), Bull. Symbolic Logic 9 (2003), no.2, 213–224.

73. Lo´s J., Quelques remarques, theor`emes et probl`emes sur les classes definissables d’alg`ebres, Mathematical interpretation of formal systems, 98–113, North-Holland Publishing, Amsterdam, 1955.

74. Lutzen J., The foundation of analysis in the 19th century, Chapter 6, A history of analysis, 155–195, H. Jahnke (ed.), History of Mathematics, 24, Amer. Math. Soc., Providence, RI, 2003.

75. McKinzie M., Tuckey C., Hidden lemmas in Euler’s summation of the reciprocals of the squares, Archive for History of Exact Sciences, 51 (1997), no.1, 29–57.

76. Mueller I., Philosophy of Mathematics and Deductive Structure in Euclid’s Elements, Dover, New York, 2006 (reprint of the edition MIT Press, Cambridge, Massachusetts 1981).

77. Nakane M., Did Weierstrass’s differential calculus have a limit-avoiding character? His definition of a limit in .-d style, BSHM Bulletin, 29 (2014), no.1, 51–59.

78. Netz R., The Shaping of Deduction in Greek Mathematics, Cambridge University Press, Cambridge, 1999.

79. Nowik T., Katz M., Differential geometry via infinitesimal displacements, Journal of Logic and Analysis, 7 (2015), no.5, 1–44.

80. Quine W., Ontological Relativity, The Journal of Philosophy, 65, no.7, 185–212.

81. Richard C., Euclidis elementorum geometricorum libros tredecim, Antwerp, Verdus, 1945.

82. Robinson A., Non-standard analysis, North-Holland Publishing, Amsterdam, 1966.

83. Sanders S., The computational content of nonstandard analysis, Proceedings Sixth International Workshop on Classical Logic and Computation, 24–40, Electron. Proc. Theor. Comput. Sci. (EPTCS), 213, EPTCS, 2016.

84. Sanders S., Reverse Formalism 16, Synthese (2017), Special Issue for SOTFOMIII, see https://arxiv.org/abs/1701.05066.

85. Sanders S., To be or not to be constructive, that is not the question, Indagationes Mathematicae, (2017), see http://dx.doi.org/10.1016/j.indag.2017.05.005.

86. Schmieden C., Laugwitz D., Eine Erweiterung der Infinitesimalrechnung, Mathematische Zeitschrift, 69 (1958), 1–39.

87. Schubring G., Comments on a paper on alleged misconceptions regarding the history of analysis: who has misconceptions? Foundations of Science, 21 (2016), no.3, 527–532.

88. Sherry D., Katz, M., Infinitesimals, imaginaries, ideals, and fictions, Studia Leibnitiana, 44 (2012), no.2, 166–192.

89. Sinkevich G., On history of epsilontics, Antiq. Math., 10 (2016), 183–204.

90. Skolem T., Uber die Unmoglichkeit einer vollstandigen Charakterisierung der Zahlenreihe mittels eines endlichen Axiomensystems, Norsk Mat. Forenings Skr., II. Ser., 1/12 (1933), 73–82.

91. Skolem T., Uber die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzahlbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fundamenta Mathematicae, 23 (1934), 150–161.

92. Skolem T., Peano’s axioms and models of arithmetic, Mathematical interpretation of formal systems, 1–14, North-Holland Publishing Co., Amsterdam, 1955.

93. S rensen H., Exceptions and counterexamples: understanding Abel’s comment on Cauchy’s theorem, Historia Math., 32 (2005), no.4, 453–480.

94. Szczerba L., Independence of Pasch’s Axiom, Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Mathematiques, Astronomiques et Physiques, 18 (1970), 491–498.

95. Szmielew W., A statement on two circles as the geometric analog to Euclid’s field property, Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Mathematiques, Astronomiques et Physiques, 18 (1970), no.7, 759–764.

96. Szmielew W., The Pasch axiom as a consequence of the circle axiom, Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Mathematiques, Astronomiques et Physiques, 18 (1970), no.12, 751– 758.

97. Szmielew W., The role of the Pasch axiom in the foundations of the Euclidean geometry, In L. Henkin (ed). Proceedings of the Tarski Symposium. AMS, Providence, Long Island, 1974, 123–132.

98. Tarski A., Une contribution `a la theorie de la mesure, Fundamenta Mathematicae, 15 (1930), 42–50.

99. Tarski A., Sur les ensembles d´efinissables de nombres reels, Fundamenta Mathematicae, 17 (1931), 210–239.

100. Tarski A., What is elementary geometry? Henkin L., Suppes P., Tarski A. (eds.), The Axiomatic Method, With special reference to geometry and physics, Amsterdam, NHPC, 1959, 16–29.

101. Teismann H., Toward a more complete list of completeness axioms, Amer. Math. Monthly, 120 (2013), no.2, 99–114.

102. Wartofsky M., The Relation Between Philosophy of Science and History of Science, In R.S. Cohen, P.K. Feyerabend, and M.W. Wartofsky (eds.), Essays in Memory of Imre Lakatos, 717–737, Boston Studies in the Philosophy of Science XXXIX, D. Reidel Publishing, Dordrecht, Holland, 1976.

Pages
115-144
Volume
47
Issue
2
Year
2017
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue