Quantitative version of the Bishop-Phelps-Bollobas theorem for operators with values in a space with the property $\beta$ |
|
Author |
vova1kadets@yahoo.com; mariiasoloviova93@gmail.com
School of Mathematics and Informatics;
Kharkiv V.N. Karazin National University, Kharkiv, Ukraine
|
Abstract |
The Bishop-Phelps-Bollobas property for operators deals with simultaneous approximation of an operator $T$ and a vector $x$ at which $T\colon X\rightarrow Y$ nearly attains its norm by an operator $F$ and a vector $z$, respectively, such that $F$ attains its norm at $z$. We study the possible estimates from above and from below for parameters that measure the rate of approximation in the Bishop-Phelps-Bollobas property for operators for the case of $Y$ having the property $\beta$ of Lindenstrauss.
|
Keywords |
Bishop-Phelps-Bollobas theorem; norm-attaining operators; property $\beta$ of Lindenstrauss
|
DOI |
doi:10.15330/ms.47.1.71-90
|
Reference |
1. Acosta M.D., Aron, R.M., Garca D., Maestre M. The Bishop-Phelps-Bollobas Theorem for operators,
J. Funct. Anal., 254 (2008), 2780–2799.
2. Acosta M.D., Guerrero B., Garca J., Kim S.K., Maestre, M. Bishop-Phelps-Bollobas property for certain spaces of operators, J. Math. Anal. Appl., 414 (2014), ¹2, 532–545. 3. Bishop, E., Phelps, R.R. A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97–98. 4. Bollobas, B. An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc., 2 (1970), 181–182. 5. Chica M., Kadets V., Martin M., Moreno-Pulido S., Rambla-Barreno F. Bishop-Phelps-Bollobas moduli of a Banach space, J. Math. Anal. Appl., 412 (2014), ¹2, 697–719. 6. Chica M., Kadets V., Martin M., Meri J., Soloviova M. Two refinements of the Bishop-Phelps-Bollobas modulus, Banach J. Math. Anal., 9 (2015), ¹4, 296–315. 7. Chica M., Kadets V., Martin M., Meri J. Further properties of the Bishop-Phelps-Bollobas moduli, Mediterranean Journal of Mathematics, 13(5) (2016), 3173–3183. 8. Diestel J., Geometry of Banach spaces, Lecture notes in Math., V.485, Springer-Verlag, Berlin, 1975. 9. James R.C. Uniformly non-square Banach spaces, Ann. Math., 80(2) (1964), 542–550. 10. Partington J., Norm attaining operators, Israel J. Math., 43 (1982), 273–276. 11. Kadets V., Soloviova M., A modified Bishop-Phelps-Bollob´as theorem and its sharpness, Mat. Stud., 44 (2015), 84–88. 12. Lindenstrauss, J., On operators which attain their norm, Israel J. Math., 1 (1963), 139–148. 13. Phelps R.R., Support cones in Banach spaces and their applications, Adv. Math., 13 (1974), 1–19. |
Pages |
71-90
|
Volume |
47
|
Issue |
1
|
Year |
2017
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |