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The Bishop-Phelps-Bollobás property for operators deals with simultaneous approximation
of an operator T and a vector x at which T : X → Y nearly attains its norm by an operator
F and a vector z, respectively, such that F attains its norm at z. We study the possible
estimates from above and from below for parameters that measure the rate of approximation
in the Bishop-Phelps-Bollobás property for operators for the case of Y having the property β
of Lindenstrauss.

1. Introduction. In this paper X, Y are real Banach spaces, L(X, Y ) is the space of all
bounded linear operators T : X → Y , L(X) = L(X,X), X∗ = L(X,R), BX and SX denote
the closed unit ball and the unit sphere of X, respectively. A functional x∗ ∈ X∗ attains
its norm, if there is x ∈ SX with x∗(x) = ‖x∗‖. The Bishop-Phelps theorem [3] (see also [8,
Chapter 1, p. 3]) says that the set of norm-attaining functionals is always dense in X∗. In
[4] B. Bollobás remarked that in fact the Bishop-Phelps construction allows to approximate
at the same time a functional and a vector at which it almost attains the norm. Nowadays
this very useful fact is called the Bishop-Phelps-Bollobás theorem. Recently, two moduli
have been introduced [5] which measure, for a given Banach space, what is the best possible
Bishop-Phelps-Bollobás theorem in that space. We will use the following notation:

Π(X) :=
{

(x, x∗) ∈ X ×X∗ : ‖x‖ = ‖x∗‖ = x∗(x) = 1
}
.

Definition 1 (Bishop-Phelps-Bollobás moduli, [5]). Let X be a Banach space. The
Bishop-Phelps-Bollobás modulus of X is the function ΦX : (0, 2) −→ R+ such that given
ε ∈ (0, 2), ΦX(ε) is the infimum of those δ > 0 satisfying that for every (x, x∗) ∈ BX ×BX∗

with x∗(x) > 1− ε, there is (y, y∗) ∈ Π(X) with ‖x− y‖ < δ and ‖x∗− y∗‖ < δ. Substituting
(x, x∗) ∈ SX × SX∗ instead of (x, x∗) ∈ BX × BX∗ in the above sentence, we obtain the
definition of the spherical Bishop-Phelps-Bollobás modulus ΦS

X(ε).

Evidently, ΦS
X(ε) 6 ΦX(ε). There is a common upper bound for ΦX(·) (and so for ΦS

X(·))
for all Banach spaces which is actually sharp. Namely [5], for every Banach space X and
every ε ∈ (0, 2) one has ΦX(ε) 6

√
2ε. In other words, this leads to the following improved

version of the Bishop-Phelps-Bollobás theorem.
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Proposition 1 ([5, Corollary 2.4]). Let X be a Banach space and 0 < ε < 2. Suppose
that x ∈ BX and x∗ ∈ BX∗ satisfy x∗(x) > 1 − ε. Then, there exists (y, y∗) ∈ Π(X) such
that ‖x− y‖ <

√
2ε and ‖x∗ − y∗‖ <

√
2ε.

The sharpness of this version is demonstrated in [5, Example 2.5] by just considering
X = `

(2)
1 , the two-dimensional real `1 space. For a uniformly non-square Banach space X one

has ΦX(ε) <
√

2ε for all ε ∈ (0, 2) ([5, Theorem 5.9], [7, Theorem 2.3]). A quantifcation of
this inequality in terms of a parameter that measures the uniform non-squareness of X was
given in [6, Theorem 3.3].

Lindenstrauss in [12] examined the extension of the Bishop–Phelps theorem on denseness
of the family of norm-attaining scalar-valued functionals on a Banach space, to vector-valued
linear operators. He introduced the property β, which is possessed by polyhedral finite-
dimensional spaces, and by any subspace of `∞ that contains c0.

Definition 2. A Banach space Y is said to have the property β if there are two sets {yα : α ∈
Λ} ⊂ SY , {y∗α : α ∈ Λ} ⊂ S∗Y and 0 6 ρ < 1 such that the following conditions hold

(i) y∗α(yα) = 1,

(ii) |y∗α(yγ)| 6 ρ if α 6= γ,

(iii) ‖y‖ = sup{|y∗α(y)| : α ∈ Λ}, for all y ∈ Y .

Denote for short by β(Y ) 6 ρ that a Banach space Y has the property β with parameter
ρ ∈ (0, 1). Obviously, if ρ1 6 ρ2 < 1 and β(Y ) 6 ρ1 , then β(Y ) 6 ρ2. If Y has the property
β with parameter ρ = 0, we will write β(Y ) = 0.

Lindenstrauss proved that if a Banach space Y has the property β, then for any Banach
space X the set of norm attaining operators is dense in L(X, Y ). It was proved later by
J. Partington ([10]) that every Banach space can be equivalently renormed to have the
property β.

In 2008, Acosta, Aron, Garćia and Maestre in [1] introduced the following Bishop-Phelps-
Bollobás property as an extension of the Bishop-Phelps-Bollobás theorem to the vector-
valued case.

Definition 3. A couple of Banach spaces (X, Y ) is said to have the Bishop-Phelps-Bollobás
property for operators if for any δ > 0 there exists a ε(δ) > 0, such that for every operator
T ∈ SL(X,Y ), if x ∈ SX and ‖T (x)‖ > 1 − ε(δ), then there exist z ∈ SX and F ∈ SL(X,Y )

satisfying ‖F (z)‖ = 1, ‖x− z‖ < δ and ‖T − F‖ < δ.

In [1, Theorem 2.2] it was proved that if Y has the property β, then for any Banach
space X the pair (X, Y ) has the Bishop-Phelps-Bollobás property for operators. In this
article we introduce an analogue of the Bishop-Phelps-Bollobás moduli for the vector-valued
case.

Definition 4. Let X, Y be Banach spaces. The Bishop-Phelps-Bollobás modulus (spherical
Bishop-Phelps-Bollobás modulus) of a pair (X, Y ) is the function Φ(X, Y, ·) : (0, 1) −→ R+

(ΦS(X, Y, ·) : (0, 1) −→ R+) whose value in point ε ∈ (0, 1) is defined as the infimum of
those δ > 0 such that for every (x, T ) ∈ BX × BL(X,Y ) ((x, T ) ∈ SX × SL(X,Y ) respectively)
with ‖T (x)‖ > 1 − ε, there is (z, F ) ∈ SX × SL(X,Y ) with ‖F (z)‖ = 1, ‖x − z‖ < δ and
‖T − F‖ < δ.
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Under the notation

Πε(X, Y ) = {(x, T ) ∈ X × L(X, Y ) : ‖x‖ 6 1, ‖T‖ 6 1, ‖T (x)‖ > 1− ε} ,
ΠS
ε (X, Y ) = {(x, T ) ∈ X × L(X, Y ) : ‖x‖ = ‖T‖ = 1, ‖T (x)‖ > 1− ε} ,

Π(X, Y ) = {(x, T ) ∈ X × L(X, Y ) : ‖x‖ = 1, ‖T‖ = 1, ‖T (x)‖ = 1} ,

the definition can be rewritten as follows

Φ(X, Y, ε) = sup
(x,T )∈Πε(X,Y )

inf
(z,F )∈Π(X,Y )

max{‖x− z‖, ‖T − F‖},

ΦS(X, Y, ε) = sup
(x,T )∈ΠSε (X,Y )

inf
(z,F )∈Π(X,Y )

max{‖x− z‖, ‖T − F‖}.

Evidently, ΦS(X, Y, ε) 6 Φ(X, Y, ε), so any estimation from above for Φ(X, Y, ·) is also valid
for ΦS(X, Y, ·) and any estimation from below for ΦS(X, Y, ·) is applicable to Φ(X, Y, ·). Also
the following result is immediate.

Remark 1. Let X, Y be Banach spaces, ε1, ε2 > 0 with ε1 < ε2. Then Πε1(X, Y ) ⊂
Πε2(X, Y ) and ΠS

ε1
(X, Y ) ⊂ ΠS

ε2
(X, Y ). Therefore, Φ(X, Y, ε) and ΦS(X, Y, ε) do not decrease

as ε increases.

Notice that a couple (X, Y ) has the Bishop-Phelps-Bollobás property for operators if and
only if Φ(X, Y, ε) −−→

ε→0
0.

The aim of the paper is to estimate the Bishop-Phelps-Bollobás modulus for operators
which act to a Banach space with the property β. This paper is organized as follows. After
the Introduction, in Section 2 we will provide an estimation from above for Φ(X, Y, ε) for
Y possessing the property β of Lindenstrauss (Theorem 1) and an improvement for the
case of X being uniformly non-square (Theorem 2). Section 3 is devoted to estimations
of Φ(X, Y, ε) from below and related problems. As a bi-product of these estimations we
obtain an interesting effect (Theorem 6) that Φ(X, Y, ε) is not continuous with respect to
the variable Y . In Section 4 we consider a modification of the above moduli which appear if
one approximates by pairs (y, F ) with ‖F‖ = ‖Fy‖ without requiring ‖F‖ = 1. Finally, in a
very short Section 5 we speak about a natural question which we did not succeed to solve.

2. Estimation from above. Our first result is the upper bound of the Bishop-Phelps-
Bollobás moduli for the case when the range space has the property β of Lindenstrauss.

Theorem 1. Let X and Y be Banach spaces such that β(Y ) 6 ρ. Then for every ε ∈ (0, 1)

ΦS(X, Y, ε) 6 Φ(X, Y, ε) 6 min

{√
2ε

√
1 + ρ

1− ρ
, 2

}
. (1)

The above result is a quantification of [1, Theorem 2.2] which states that if Y has the
property β, then for any Banach space X the pair (X, Y ) has the Bishop-Phelps-Bollobás
property for operators. The construction is borrowed from the demonstration of [1, Theorem
2.2], but in order to obtain (1) we have to take care about details and need some additional
work. At first, we have to modify a little bit the original results of Phelps about approximation
of a functional x∗ and a vector x.

Proposition 2 ([13], Corollary 2.2). Let X be a real Banach space, x ∈ BX , x∗ ∈ SX∗ ,
η > 0 and x∗(x) > 1− η. Then for any k ∈ (0, 1) there exist ζ∗ ∈ X∗ and y ∈ SX such that
ζ∗(y) = ‖ζ∗‖, ‖x− y‖ < η

k
, ‖x∗ − ζ∗‖ < k.
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For our purposes we need an improvement which allows to take any x∗ ∈ BX∗ .

Lemma 1. Let X be a real Banach space, x ∈ BX , x∗ ∈ BX∗ , ε ∈ (0, 1) and x∗(x) > 1− ε.
Then for any k ∈ (0, 1) there exist y∗ ∈ X∗ and z ∈ SX such that

y∗(z) = ‖y∗‖, ‖x− z‖ <
1− 1−ε

‖x∗‖

k
, ‖x∗ − y∗‖ < k‖x∗‖. (2)

Moreover, for any k̃ ∈ [ε/2, 1) there exist z∗ ∈ SX∗ and z ∈ SX such that

z∗(z) = 1, ‖x− z‖ < ε

k̃
, ‖x∗ − z∗‖ < 2k̃. (3)

Proof. We have that x∗

‖x∗‖(x) > 1 − η for η = 1 − 1−ε
‖x∗‖ and we can apply Proposition 2. So,

for any k ∈ (0, 1) there exist ζ∗ ∈ X∗ and z ∈ SX such that

ζ∗(z) = ‖ζ∗‖, ‖x− z‖ < η

k
, ‖ x∗

‖x∗‖
− ζ∗‖ < k.

In order to get (2) it remains to introduce y∗ = ‖x∗‖·ζ∗. This functional also attains its norm
at z and ‖x∗ − y∗‖ = ‖x∗‖ · ‖ x∗

‖x∗‖ − ζ
∗‖ < k‖x∗‖. In order to demonstrate the “moreover”

part, take k = k̃(‖x∗‖−(1−ε))
ε‖x∗‖ .

The inequality ‖x∗‖ > x∗(x) > 1 − ε implies that k > 0. On the other hand, k =

k̃(1
ε
− (1−ε)

ε‖x∗‖) 6 k̃(1
ε
− (1−ε)

ε
) = k̃ < 1, so for this k we can find y∗ ∈ X∗ and z ∈ SX such that

(2) holds true. Denote z∗ = y∗

‖y∗‖ . Then ‖x− z‖ < ε/k̃ and

‖x∗ − z∗‖ 6 ‖x∗ − y∗‖+ ‖y∗ − z∗‖ 6 ‖x∗ − y∗‖+ |1− ‖y∗‖| 6
6 ‖x∗ − y∗‖+ |1− ‖x∗‖+ ‖x∗‖ − ‖y∗‖| 6 2‖x∗ − y∗‖+ 1− ‖x∗‖.

So, we have

‖x∗ − z∗‖ < 2k‖x∗‖+ 1− ‖x∗‖ =
2k̃ · (‖x∗‖ − (1− ε))

ε
+ 1− ‖x∗‖ 6 2k̃.

The latter inequality holds, since the function f(t) = 2k̃·(t−(1−ε))
ε

+ 1− t with t ∈ (1− ε, 1),
is increasing when k̃ > ε/2, so max f = f(1) = 2k̃.

Remark 2. One can easily see that for k̃ < ε
2
the “moreover” part with (1) is trivially

true (and is not sharp) because in this case the inequality ‖x − z‖ 6 ε
k̃
is weaker than the

triangle inequality ‖x− z‖ 6 2, so one can just use the density of the set of norm-attaining
functionals in order to get the desired (z, z∗) ∈ Π(X) with ‖x∗ − z∗‖ < 2k̃.

Proof of Theorem 1. We will use the notations {yα : α ∈ Λ} ⊂ SY and {y∗α : α ∈ Λ} ⊂ S∗Y
from Definition 2 of the property β.

Consider T ∈ BL(X,Y ) and x ∈ BX such that ‖Tx‖ > 1 − ε. According to (iii) of
Definition 2, there is α0 ∈ Λ such that |y∗α0

(Tx)| > 1 − ε. By Lemma 1, for any k ∈ [ ε
2
, 1)

and for any δ > 0 there exist z∗ ∈ SX∗ and z ∈ SX such that |z∗(z)| = 1, ‖z− x‖ < ε/k and
‖z∗ − T ∗(y∗α0

)‖ < 2k.
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For η = 2k ρ
1−ρ let us introduce the following operator S ∈ L(X, Y )

S(v) = T (v) + [(1 + η)z∗(v)− (T ∗y∗α0
)(v)]yα0 . (4)

Remark, that for all y∗ ∈ Y ∗

S∗(y∗) = T ∗(y∗) + [(1 + η)z∗ − T ∗y∗α0
]y∗(yα0).

According to (iii) of Definition 2 the set {y∗α : α ∈ Λ} is norming for Y , consequently ‖S‖ =
supα‖S∗y∗α‖. Let us calculate the norm of S. ‖S‖ > ‖S∗(y∗α0

)‖ = (1 + η)‖z∗‖ = 1 + η.
On the other hand for α 6= α0 we obtain

‖S∗(y∗α)‖ 6 1 + ρ(‖z∗ − T ∗(y∗α0
)‖+ η‖z∗‖) < 1 + ρ(2k + η) = 1 + η.

Therefore,

‖S‖ = ‖S∗(y∗α0
)‖ = (1 + η)‖z∗‖ = |y∗α0

(S(z))| 6 ‖S(z)‖ 6 ‖S‖.

So, we have ‖S‖ = ‖S(z)‖ = 1 + η. Also, ‖S − T‖ 6 η + ‖z∗ − T ∗(y∗α0
)‖ < η + 2k.

Define F := S
‖S‖ . Then ‖F‖ = ‖F (z)‖ = 1 and ‖S − F‖ = ‖S‖(1 − 1

1+η
) = η. So,

‖T − F‖ < 2k + 2η.
Therefore, we have that ‖z − x‖ < ε/k and ‖T − F‖ < 2k 1+ρ

1−ρ .

Let us substitute k =
√

ε
2
· 1−ρ

1+ρ
(here we need ε 6 2(1−ρ)

1+ρ
to have k ∈ [ε/2, 1)). Then we

obtain

max{‖z − x‖, ‖T − F‖} <
√

2ε

√
1 + ρ

1− ρ
.

Finally, if ε > 2(1−ρ)
1+ρ

, we can use the triangle inequality to get the evident estimate max{‖z−
x‖, ‖T − F‖} 6 2.

Our next goal is to give an improvement for a uniformly non-square domain space X. We
recall that uniformly non-square spaces were introduced by James [9] as those spaces whose
two-dimensional subspaces are uniformly separated (in the sense of Banach-Mazur distance)
from `

(2)
1 . A Banach space X is uniformly non-square if and only if there is α > 0 such that

1

2
(‖x+ y‖+ ‖x− y‖) 6 2− α

for all x, y ∈ BX . The parameter of uniform non-squareness of X, which we denote α(X), is
the best possible value of α in the above inequality. In other words,

α(X) := 2− sup
x,y∈BX

{
1

2
(‖x+ y‖+ ‖x− y‖)

}
.

In [6, Theorem 3.3] it was proved that for a uniformly non-square space X with the
parameter of uniform non-squareness α(X) > α0 > 0

ΦS
X(ε) 6

√
2ε

√
1− 1

3
α0 for ε ∈

(
0,

1

2
− 1

6
α0

)
.

To obtain this fact the authors proved the following technical result.
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Lemma 2. Let X be a Banach space with α(X) > α0. Then for every x ∈ SX , y ∈ X and
every k ∈ (0, 1

2
] if ‖x− y‖ 6 k then∥∥∥∥x− y

‖y‖

∥∥∥∥ 6 2k

(
1− 1

3
α0

)
.

Theorem 2. Let X and Y be Banach spaces such that β(Y ) 6 ρ, X is uniformly non-square
with α(X) > α0, and ε0 = min

{
2

(1−1/3α0)
1−ρ
1+ρ

, 1
2

1+ρ
1−ρ(1− 1/3α0)

}
. Then for any 0 < ε < ε0

ΦS(X, Y, ε) 6

√
2ε

(
1− 1

3
α0

)√
1 + ρ

1− ρ
. (5)

Before proving the theorem, we need a preliminary result.

Lemma 3. Let X be a Banach space with α(X) > α0. Then for every 0 < ε < 1 and
for every (x, x∗) ∈ SX × BX∗ with x∗(x) > 1 − ε, and for every k ∈ [ ε

2(1−1/3α0)
, 1

2
] there is

(y, y∗) ∈ Π(X) such that

‖x− y‖ < ε

k
and ‖x∗ − y∗‖ < 2k

(
1− 1

3
α0

)
.

Proof. The reasoning is almost the same as in Lemma 1. We have that x∗

‖x∗‖(x) > 1 − η for
η = 1− 1−ε

‖x∗‖ and we can apply Proposition 2 for every k̃ ∈ (0, 1/2]. Let us take

k̃ =
k(‖x∗‖ − (1− ε))

ε‖x∗‖
.

The inequality ‖x∗‖ > x∗(x) > 1−ε implies that k̃ > 0. On the other hand, k̃ = k(1
ε
− (1−ε)
ε‖x∗‖) 6

k(1
ε
− (1−ε)

ε
) = k < 1/2, so for this k̃ we can find ζ∗ ∈ X∗ and z ∈ SX such that

ζ∗(z) = ‖ζ∗‖, ‖x− z‖ < η

k̃
, ‖ x∗

‖x∗‖
− ζ∗‖ < k̃.

Consider z∗ = ζ∗

‖ζ∗‖ . According to Lemma 2∥∥∥ x∗

‖x∗‖
− z∗

∥∥∥< 2k̃

(
1− 1

3
α0

)
.

Then ‖x− z‖ < ε/k and

‖x∗ − z∗‖ = ‖x∗‖ ·
∥∥∥∥ x∗

‖x∗‖
− z∗

‖x∗‖

∥∥∥∥ 6 ‖x∗‖
(∥∥∥∥ x∗

‖x∗‖
− z∗

∥∥∥∥+

∥∥∥∥z∗ − z∗

‖x∗‖

∥∥∥∥) =

= ‖x∗‖
(

2k̃(1− 1/3α0) +

∣∣∣∣1− 1

‖x∗‖

∣∣∣∣) =

= 2
k(‖x∗‖ − (1− ε))

ε
(1− 1/3α0) + 1− ‖x∗‖ 6 2k(1− 1/3α0).

The last inequality holds, because if we consider the function

f(t) =
2k(1− 1/3α0) · (t− (1− ε))

ε
+ 1− t

with t ∈ (1− ε, 1], then f ′ > 0 if k > ε
2(1−1/3α0)

, so max f = f(1) = 2k
(
1− 1

3
α0

)
.
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Proof of Theorem 2. The proof is a minor modification of the one given for Theorem 1.
In order to get (5) for ε < ε0 we consider T ∈ SL(X,Y ) and x ∈ SX such that ‖T (x)‖ > 1−ε.

Since Y has the property β, there is α0 ∈ Λ such that |y∗α0
(T (x))| > 1 − ε. By Lemma 3,

for any k ∈ [ ε
2(1−1/3α0)

, 1
2
] and for any ε > 0 there exist z∗ ∈ SX∗ and z ∈ SX such that

|z∗(z)| = 1, ‖z − x‖ < ε/k and ‖z∗ − T ∗(y∗α0
)‖ < 2k(1− 1/3α0).

For η = 2k(1− 1/3α0) ρ
1−ρ we define S ∈ L(X, Y ) by formula (4) and take F := S

‖S‖ . By
the same argumentation as before, we have that

‖x− z‖ < ε/k and ‖T − F‖ < 2k

(
1− 1

3
α0

)
1 + ρ

1− ρ
.

Let us substitute k =
√

ε
2(1−1/3α0)

· 1−ρ
1+ρ

(here we need ε < ε0). Then we obtain that

max{‖z − x‖, ‖T − F‖} <

√
2ε

(
1− 1

3
α0

)√
1 + ρ

1− ρ
.

3. Estimation from below.
3.1. Improvement for Φ(`

(2)
1 , Y, ε). We tried our best, but unfortunately we could not find

an example demonstrating the sharpness of (1) in Theorem 1. So, our goal is less ambitious.
We are going to present examples of pairs (X, Y ) for which the estimation of Φ(X, Y, ε) from
below is reasonably close to the estimation from above given in (1).

Theorem 2 shows that in order to check the sharpness of Theorem 1 one has to try those
domain spaces X that are not uniformly non-square. The simplest of them is X = `

(2)
1 . In

[5, Example 2.5] this space worked perfectly for the Bishop-Phelps-Bollobás modulus for
functionals. Nevertheless, this is not so when one deals with the Bishop-Phelps-Bollobás
modulus for operators. Namely, the following theorem demonstrates that for X = `

(2)
1 the

estimation given in Theorem 1 can be improved.

Theorem 3. Let Y be Banach spaces and β(Y ) 6 ρ. Then

ΦS(`
(2)
1 , Y, ε) 6 Φ(`

(2)
1 , Y, ε) 6 min

{
√

2ε
1 + ρ√

1− ρ2 + ε
2
ρ2 + ρ

√
ε
2

, 1

}
. (6)

To prove this theorem we need a preliminary result.

Lemma 4. Let Y be a Banach space such that β(Y ) 6 ρ, y ∈ BY , {yα : α ∈ Λ} ⊂ SY ,
{y∗α : α ∈ Λ} ⊂ S∗Y be the sets from Definition 2. For given r ∈ (0, 1), α0 ∈ Λ suppose that
y∗α0

(y) > 1− r. Then there is z ∈ SY such that

(i) y∗α0
(z) = 1;

(ii) |y∗α(z)| 6 1 for all α ∈ Λ;

(iii) ‖y − z‖ 6 r(1+ρ)
1−ρ+ρr

.

Proof. Suppose that y∗α0
(y) = 1− r0, r0 ∈ [0, r]. According to (i) of Definition 2 y∗α0

(yα0) = 1.
Let us check the properties (i)-(iii) for

z :=
r0

1− ρ+ ρr0

yα0 +

(
1− r0ρ

1− ρ+ ρr0

)
y.
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(i) y∗α0
(z) = r0

1−ρ+ρr0
+ (1− r0ρ

1−ρ+ρr0
)(1− r0) = 1;

(ii) For every α 6= α0 we have |y∗α(z)| 6 r0
1−ρ+ρr0

· ρ+ (1− r0ρ
1−ρ+ρr0

) = 1;
(iii) As {y∗α : α ∈ Λ} ⊂ S∗Y is a 1-norming subset, so ‖y − z‖ = sup

α∈Λ
|y∗α(y − z)|. Notice that

|y∗α0
(y − z)| 6 r, and for every α 6= α0 we have

|y∗α(y − z)| =
∣∣∣∣ r0

1− ρ+ ρr0

y∗α(y)− r0

1− ρ+ ρr0

y∗α(yα0)

∣∣∣∣ 6 r0(1 + ρ)

1− ρ+ ρr0

6
r(1 + ρ)

1− ρ+ ρr
.

So, ‖y − z‖ 6 max
{
r, r(1+ρ)

1−ρ+ρr

}
= r(1+ρ)

1−ρ+ρr
.

Finally, (i) and (ii) imply that z ∈ SY .

Remark 3. For every operator T ∈ L(`
(2)
1 , Y )

‖T‖ = max{‖T (e1)‖, ‖T (e2)‖}.

Moreover, if the operator T ∈ L(`
(2)
1 , Y ) attains its norm at some point x ∈ S

`
(2)
1

which does
not coincide with ±e1 and ±e2, then either the segment [T (e1), T (e2)], or [T (e1),−T (e2)] has
to lie on the sphere ‖T‖SY .

Proof of Theorem 3. Let us denote A(ρ, ε) :=
√

2ε 1+ρ√
1−ρ2+ ε

2
ρ2+ρ
√

ε
2

. Notice that A(ρ, ε) is

increasing as a function of ρ, in particular
√

2ε = A(0, ε) 6 A(ρ, ε) 6 A(1, ε) = 2.
We are going to demonstrate that for every pair (x, T ) ∈ Πε(`

(2)
1 , Y ) there exists a pair

(y, F ) ∈ Π(`
(2)
1 , Y ) with

max{‖x− y‖, ‖T − F‖} 6 min{A(ρ, ε), 1}.

Without loss of generality suppose that x = (t(1−δ), tδ), δ ∈ [0, 1/2], t ∈ [1−ε, 1]. Evidently,
‖x‖ = t. First, we make sure that Φ(`

(2)
1 , Y, ε) 6 1. Indeed, we can always approximate

(x, T ) by the pair y := e1 and F determined by formula F (ei) := T (ei)/‖T (ei)‖. Then
‖x− e1‖ = 2tδ + 1− t 6 1 and ‖T − F‖ 6 1.

It remains to show that Φ(`
(2)
1 , Y, ε) 6 A(ρ, ε), when A(ρ, ε) < 1. As A(ρ, ε) >

√
2ε

we must consider ε ∈ (0, 1/2). Since Y has the property β, we can select an α0 such that
|y∗α0

(T (x))| > 1 − ε. Without loss of generality we may assume y∗α0
(T (x)) > 1 − ε. Then

y∗α0

(
T
(
x
t

))
> 1− ε′, where ε′ = ε−(1−t)

t
∈ (0, ε). Therefore,

y∗α0
(T (e1)) > 1− ε′

1− δ
and y∗α0

(T (e2)) > 1− ε′

δ
. (7)

We are searching for an approximation of (x, T ) by a pair (y, F ) ∈ Π(`
(2)
1 , Y ). Let us consider

two cases:
Case I: 2tδ + 1 − t 6 A(ρ, ε). In this case we approximate (x, T ) by the vector y := e1

and the operator F such that F (e1) := T (e1)
‖T (e1)‖ , F (e2) := T (e2). Then

‖x− y‖ 6 2tδ + 1− t 6 A(ρ, ε) and ‖T − F‖ 6 1− ‖T (e1)‖ 6 ε

1− δ
6 2ε 6 A(ρ, ε).
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Case II: 2tδ + 1 − t > A(ρ, ε). Remark, that in this case 2tδ + 1 − t >
√

2ε, and
consequently (here we use that A(ρ, ε) >

√
2ε, ε ∈ (0, 1/2) and t ∈ (0, 1]),

δ >

√
2ε− (1− t)

2t
> ε′.

According to (7) we can apply Lemma 4 for the points T (e1) and T (e2) with r = ε′

δ
< 1. So,

there are z1, z2 ∈ SY such that y∗α0
(z1) = y∗α0

(z2) = 1 and

max{‖T (e1)− z1‖, ‖T (e2)− z2‖} 6
ε′

δ
(1 + ρ)

1− ρ+ ρ ε
′

δ

.

Denote y := x/t ∈ S
`
(2)
1

and define F as follows

F (e1) := z1, F (e2) := z2.

Then ‖F‖ = 1, ‖F (y)‖ > y∗α0
(Fy) = 1, so F attains its norm at y and

‖T − F‖ 6
ε′

δ
(1 + ρ)

1− ρ+ ρ ε
′

δ

.

So, in this case

‖x− y‖ 6 ε 6 A(ρ, ε) and ‖T − F‖ 6
(1 + ρ) ε−1+t

tδ

1− ρ+ ρ ε−1+t
tδ

.

To prove our statement we must show that if 2tδ + 1 − t > A(ρ, ε), then (1+ρ) ε−1+t
tδ

1−ρ+ρ ε−1+t
tδ

6

A(ρ, ε). Let us denote f(t, δ) = 2tδ+ 1− t and g(t, δ) =
(1+ρ) ε−1+t

tδ

1−ρ+ρ ε−1+t
tδ

= (1+ρ)(ε−1+t)
(1−ρ)tδ+ρ(ε−1+t)

. So, we
need to demonstrate that

min{f(t, δ), g(t, δ)} 6 A(ρ, ε) for all δ ∈ [0, 1/2] and for all t ∈ [1− ε, 1]. (8)

Notice that for every fixed t ∈ [1 − ε, 1] the function f(t, δ) is increasing as δ increases
and g(t, δ) is decreasing as δ increases. So, if we find δ0 such that f(t, δ) = g(t, δ), then
min{f(t, δ), g(t, δ)} 6 f(t, δ0). If we denote u = f(t, δ) = 2tδ + 1 − t then the equation
f(t, δ) = g(t, δ) transforms to

u = 2− 2(1− ρ)(u− ε)
(t− 1 + ε)(1 + ρ) + (u− ε)(1− ρ)

. (9)

The right-hand side of this equation is increasing as t increases, so the positive solution of
equation (9) ut is also increasing. This means that we obtain the greatest possible solution,
if we substitute t = 1. Then we get the equation

u2 1 + ρ

2
+ uρε− ε(1 + ρ) = 0.

From here u = A(ρ, ε), and so, inequality (8) holds.
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3.2. Estimation from below for ΦS(`
(2)
1 , Y, ε). So, if X = `

(2)
1 , the estimation for the

Bishop-Phelps-Bollobás modulus is somehow better than in Theorem 1. Nevertheless, consi-
dering `(2)

1 we can obtain some interesting estimations from below for ΦS(`
(2)
1 , Y, ε). Notice

that estimations (1) and (6) give the same asymptotic behaviour when ε tends to 0. Our
next proposition gives an estimation for ΦS(`

(2)
1 , Y, ε) from below, when β(Y ) = 0.

Theorem 4. For every Banach space Y

ΦS(`
(2)
1 , Y, ε) > min{

√
2ε, 1}.

In particular, ΦS(`
(2)
1 , Y, ε) = min{

√
2ε, 1} if β(Y ) = 0.

Proof. To prove our statement we must show that ΦS(`
(2)
1 , Y, ε) >

√
2ε for ε ∈ (0, 1/2).

The remaining inequality ΦS(`
(2)
1 , Y, ε) > 1 for ε > 1/2 will follow from the monotonicity

of ΦS(`
(2)
1 , Y, ·). So, for every ε ∈ (0, 1/2) and for every δ > 0 we are looking for a pair

(x, T ) ∈ ΠS
ε (`

(2)
1 , Y ) such that max {‖x− y‖, ‖T − F‖} >

√
2ε − δ. for every pair (y, F ) ∈

Π(`
(2)
1 , Y ). Fix ξ ∈ SY and ε0 < ε such that

√
2ε0 >

√
2ε−δ. Consider the following operator

T ∈ S
L(`

(2)
1 ,Y )

:
T (z1, z2) = (z1 + (1−

√
2ε0)z2)ξ

and take x = (1 −
√
ε0/2,

√
ε0/2) ∈ S

`
(2)
1
. Then ‖T (x)‖ = 1 − ε0 > 1 − ε. To approximate

the pair (x, T ) by a pair (y, F ) ∈ Π(`
(2)
1 , Y ) we have two possibilities: either y is an extreme

point of B
`
(2)
1

or F attains its norm at a point that belongs to conv{e1, e2}, and so attains
its norm at both points e1, e2. In the first case we are forced to have y = (1, 0), and then
‖x − y‖ =

√
2ε0 >

√
2ε − δ. In the second case we have ‖F − T‖ > ‖F (e2) − T (e2)‖ >

‖F (e2)‖ − ‖T (e2)‖ =
√

2ε0 >
√

2ε− δ.

Our next goal is to estimate the spherical Bishop-Phelps-Bollobás modulus from below
for the values of parameter ρ between 1/2 and 1. Fix ρ ∈ [1

2
, 1) and denote Yρ the linear

space R2 equipped with the norm

‖x‖ρ = max

{∣∣∣x1 +

(
2− 1

ρ

)
x2

∣∣∣, ∣∣∣x2 +

(
2− 1

ρ

)
x1

∣∣∣, |x1 − x2|
}
. (10)

In other words,

‖(x1, x2)‖ =


|x1 − x2|, if x1x2 6 0;

|x1 + (2− 1
ρ
)x2|, if x1x2 > 0 and |x1| > |x2|;

|x2 + (2− 1
ρ
)x1|, if x1x2 > 0 and |x1| 6 |x2|.

and the unit ball Bρ of Xρ is the hexagon absdef , where a = (1, 0); b = ( ρ
3ρ−1

, ρ
3ρ−1

); c =

(0, 1); d = (−1, 0); e = (− ρ
3ρ−1

, ρ
3ρ−1

); and f = (0,−1).
The dual space to Yρ is R2 equipped with the polar to Bρ as its unit ball. So, the norm

on Y ∗ = Y ∗ρ is given by the formula

‖x‖∗ρ = ‖(x1, x2)‖∗ = max

{
|x1|, |x2|,

ρ

3ρ− 1
|x1 + x2|

}
,
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-

6

a

y1

by2
c

y3

d

e

f

Figure 1

-

6

d∗

c∗ = y∗3 b∗ = y∗2

a∗ = y∗1

f∗e∗

Figure 2

and the unit ball B∗ρ of Y ∗ρ is the hexagon a∗b∗c∗d∗e∗f ∗, where a∗ = (1, 2 − 1
ρ
); b∗ =

(2 − 1
ρ
, 1); c∗ = (−1, 1); d∗ = (−1,−(2 − 1

ρ
)); e∗ = (−(2 − 1

ρ
),−1); and f ∗ = (1,−1). The

corresponding spheres Sρ and S∗ρ are shown on Figures 1 and 2 respectively.

Proposition 3. In the space Y = Yρ

β(Y ) 6 ρ.

Proof. Consider two sets:{
y1 =

(
2ρ2

3ρ− 1
,
ρ− ρ2

3ρ− 1

)
, y2 =

(
ρ− ρ2

3ρ− 1
,

2ρ2

3ρ− 1

)
, y3 =

(
−1

2
,
1

2

)}
⊂ SYρ

and {y∗1 = (1, 2− 1
ρ
), y∗2 = (2− 1

ρ
, 1), y∗3 = (−1, 1)} ⊂ SY ∗ρ .

Then ‖y‖ = sup{|y∗n(y)| : n = 1, 2, 3} for all y ∈ Yρ, y∗n(yn) = 1 for n = 1, 2, 3 and
|y∗i (yj)| 6 ρ for all i 6= j. Indeed, y∗1(y1) = 2ρ2+2ρ−2ρ2−1+ρ

3ρ−1
= 1; y∗1(y2) = ρ−ρ2+4ρ2−2ρ

3ρ−1
= ρ;

y∗1(y3) = −1
2

+ 1− 1
2ρ

= −1−ρ
2ρ

> −ρ, consequently |y∗1(y3)| 6 ρ (here appears the restriction
ρ > 1/2); y∗2(y1) = y∗1(y2) = ρ; y∗2(y2) = y∗1(y1) = 1; y∗2(y3) = −y∗1(y3) 6 ρ; |y∗3(y1)| =∣∣∣−2ρ2+ρ−ρ2

3ρ−1

∣∣∣ = ρ; y∗3(y2) = −y∗3(y1) = ρ; and finally y∗3(y3) = 1
2

+ 1
2

= 1.

Theorem 5. Let ρ ∈ [1/2, 1), 0 < ε < 1. Then, for the space Y = Yρ one has

ΦS(`
(2)
1 , Y, ε) > min

{√
2ρε

1− ρ
, 1

}
.

Proof. To prove our statement we must show that ΦS(`
(2)
1 , Y, ε) >

√
2ρε
1−ρ for ε ∈

(
0, 1−ρ

2ρ

)
.

The remaining inequality ΦS(`
(2)
1 , Y, ε) > 1 for ε > 1−ρ

2ρ
will follow from the monotonicity
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of ΦS(`
(2)
1 , Y, ·). So, for every ε ∈ (0, 1−ρ

2ρ
) and for every δ > 0 we are looking for a pair

(x, T ) ∈ ΠS
ε (`

(2)
1 , Y ) such that

max {‖x− y‖, ‖T − F‖} >
√

2ρε

1− ρ
− δ

for every pair (y, F ) ∈ Π(`
(2)
1 , Y ).

Fix an ε0 < ε such that
√

2ρε0
1−ρ >

√
2ρε
1−ρ − δ. Consider the point

x =

(
1−

√
2ρε0

2
√

1− ρ
,

√
2ρε0

2
√

1− ρ

)
∈ S

`
(2)
1

and T ∈ L(`
(2)
1 , Y ) such that

T (ei) =

√
2ρε0

1− ρ
ei +

(
1−

√
2ρε0

1− ρ

)
· b,

where b = ( ρ
3ρ−1

, ρ
3ρ−1

) is the extreme point of SY from Figure 1. Notice that ‖T‖ = ‖T (e1)‖ =

‖T (e2)‖ = 1 and ‖T (x)‖ = 1− ε0 > 1− ε.
The part of S

`
(2)
1

consisting of points that have a distance to x less than or equal to
√

2ρε0
1−ρ

lies on the segment [e1, e2). Consequently, in order to approximate the pair (x, T ) we have
two options: to approximate the point x by e1, and then we can take F := T ; or as F choose
an operator attaining its norm at some point of (e1, e2) (and hence at all points of [e1, e2]),
and then we can take y := x.

In the first case we have ‖T − F‖ = 0 and ‖x− y‖ =
√

2ρε0
1−ρ >

√
2ρε
1−ρ − δ. In the second

case let us demonstrate that

‖T − F‖ = max
i
‖T (ei)− F (ei)‖ >

√
2ρε0

1− ρ
.

If it is not so, then for both values of i = 1, 2

‖T (ei)− F (ei)‖ <
√

2ρε0

1− ρ
= ‖T (ei)− b‖.

Since F attains its norm at all points of [e1, e2], the line segment F ([e1, e2]) should lie on
a line segment of SY , but the previous inequality makes this impossible, because T (e1) and
T (e2) lie on different line segments of SY with b being their only common point.

3.3. Non-continuity of the Bishop-Phelps-Bollobás modulus for operators. It is
known [7, Theorem 3.3] that both (usual and spherical) Bishop-Phelps-Bollobás moduli for
functionals are continuous with respect to X. As a consequence of Theorem 5 we will obtain
that the Bishop-Phelps-Bollobás moduli of a pair (X, Y ) as a function of Y are not continuous
in the sense of Banach-Mazur distance.

Let X and Y be isomorphic. Recall that the Banach-Mazur distance between X and Y
is the following quantity

d(X, Y ) = inf{‖T‖‖T−1‖ : T : X → Y isomorphism.}
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A sequence Zn of Banach spaces is said to be convergent to a Banach space Z if
d(Zn, Z) −→

n→∞
1.

Notice, that Yρ −→
ρ→1

`
(2)
1 .

Theorem 6. Let ρ ∈ [1/2, 1) and Yρ be the spaces defined by (10). Then for every ε ∈ (0, 1
2
)

Φ(`
(2)
1 , Yρ, ε) 6−→

ρ→1
Φ(`

(2)
1 , `

(2)
1 , ε), and ΦS(`

(2)
1 , Yρ, ε) 6−→

ρ→1
ΦS(`

(2)
1 , `

(2)
1 , ε).

Proof. On the one hand, from the Theorem 1 with ρ = 0 we get for ε ∈ (0, 1
2
)

ΦS(`
(2)
1 , `

(2)
1 , ε) 6 Φ(`

(2)
1 , `

(2)
1 , ε) 6

√
2ε < 1.

On the other hand, Theorem 5 gives

Φ(`
(2)
1 , Yρ, ε) > ΦS(`

(2)
1 , Yρ, ε) > min

{√
2ρε

1− ρ
, 1

}
−−→
ρ→1

1.

3.4. Behavior of ΦS(X, Y, ε) when ε→ 0. In subsection using two-dimensional spaces Y
we were able to give the estimation only for ρ ∈ [1/2, 1). This is not surprising, because in
every n-dimensional Banach space with the property β we have either ρ = 0, or ρ > 1

n
. We

did not find any mentioning of this in literature, so we give the proof of this fact.

Proposition 4. Let Y (n) be a Banach space of dimension n with β(Y (n)) 6 ρ < 1
n
. Then

Y (n) is isometric to `(n)
∞ , i.e. β(Y (n)) = 0.

We need one preliminary result.

Lemma 5. Let Y (n) be a Banach space of dimension n with β(Y (n)) 6 ρ < 1
n
and {yα : α ∈

Λ} ⊂ SY , {y∗α : α ∈ Λ} ⊂ S∗Y be the sets from Definition 2. Then |Λ| = n.

Proof. |Λ| > n, because {y∗α : α ∈ Λ} is a 1-norming subset. Assume that |Λ| > n. We are
going to demonstrate that every subset of {yα : α ∈ Λ} consisting of n+1 elements is linearly
independent.

Without loss of generality we can take a subset {yi}n+1
i=1 ⊂ {yα : α ∈ Λ}. Consider

the corresponding linear combination
∑n+1

i=1 aiyi with max |ai| = 1 and let us check that∑n+1
i=1 aiyi 6= 0. Let j 6 n+ 1 be a number such that |aj| = 1. Then we can estimate∥∥∥n+1∑

i=1

aiyi

∥∥∥> ∣∣∣∣∣y∗j
(
n+1∑
i=1

aiyi

)∣∣∣∣∣=
∣∣∣∣∣ajy∗j (yj) +

n+1∑
i=1
i 6=j

aiy
∗
j (yi)

∣∣∣∣∣> 1−
n+1∑
i=1
i 6=j

|ai|ρ > 0.

It follows that Y (n) contains n+1 linearly independent elements. This contradiction completes
the proof.

Proof of Proposition 4. According to Definition 2 together with Lemma 5 there are two sets
{yi}ni=1 ⊂ SY (n) , {y∗i }ni=1 ⊂ S∗

Y (n) such that y∗i (yi) = 1, |y∗i (yj)| < 1/n if i 6= j, ‖y‖ =
sup{|y∗i (y)| : i = 1, . . . , n}, for all y ∈ Y.

Let us define the operator U : Y (n) → `
(n)
∞ by the formula U(y) := (y∗1(y), y∗2(y), . . . , y∗n(y)).

Obviously, ‖U(y)‖ = ‖y‖ for all y ∈ Y (n), so, U is isometry. Since dimY (n) = dim `
(n)
∞ , the

operator U is bijective. This means that Y (n) is isometric to `(n)
∞ , and since β(`

(n)
∞ ) = 0, we

have that β(Y (n)) = 0.
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So, in order to obtain all possible values of parameter ρ we must consider spaces of higher
dimensions. For every fixed dimension n fix a ρ ∈ [ 1

n
, 1) and denote Z = Z

(n)
ρ the linear space

Rn equipped with the norm

‖x‖ = max

{
|x1|, |x2|, . . . , |xn|,

1

ρn

∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
}
. (11)

Proposition 5. Let Z = Z
(n)
ρ with n > 2 and ρ ∈ [ 1

n
, 1). Then

β(Z) 6 ρ.

Proof. Consider two sets:yj = − 1

n− 1 + ρn

n∑
i=1
i 6=j

ei + ej, z = ρ
n∑
i=1

ei

 ⊂ SZ

{
y∗j = ej, z

∗ =
1

ρn

n∑
i=1

ei

}
⊂ SZ∗ .

It follows directly from (11) that the subset
{
{y∗j}ni=1, z

∗} is 1-norming. Also,

y∗i (yi) = 1, |y∗j (yi)| = | −
1

n− 1 + ρn
| 6 ρ, y∗j (z) = ρ, z∗(z) = 1, z∗(yi) =

1

n− 1 + ρn
6 ρ.

Remark that in all our estimations of ΦS(X, Y, ε) appears the multiplier
√

2ε. So, in order
to measure the behavior of ΦS(X, Y, ε) at 0, it is natural to introduce the following quantity

Ψ(X, Y ) := lim sup
ε→0

ΦS(X, Y, ε)√
2ε

.

Also define

Ψ(ρ) := sup
Y : β(Y )=ρ

sup
X

lim sup
ε→0

Ψ(X, Y )

which measures the worst possible behavior in 0 of ΦS(X, Y, ε) when β(Y ) 6 ρ. From
Theorem 1 we know that Ψ(ρ) 6

√
1+ρ
1−ρ . Now we will estimate Ψ(ρ) from below.

Theorem 7.

Ψ(ρ) > min

{√
2ρ

1− ρ
, 1

}
for all values of ρ ∈ (0, 1).
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Proof. From Theorem 4 we know that Ψ(ρ) > 1. So, we have to check that Ψ(ρ) >
√

2ρ
1−ρ . In

order to estimate Ψ(ρ) from below for small ε we consider the couple of spaces (`
(2)
1 , Z

(n)
ρ ).

Denote z∗ = 1
ρn

∑n
i=1 ei and Γ = {x ∈ SZ : z∗(x) = 1}. Consider the point x = (1− δ, δ) and

the operator T such that

T (e1) = ρ

n∑
i=1

ei and T (e2) = t

k∑
i=1

ei +
n∑

i=k+1

ei,

with k = 1
2
n(1− ρ) + 1 + θ ∈ N being the nearest integer to 1

2
n(1− ρ) + 1 (so, |θ| 6 1/2) and

t = −1 +
4 + 4θ − 2nρ ε0

δ

n− nρ+ 2 + 2θ
, (12)

where δ > 0 will be defined later and ε0 < ε. Then z∗(T (x)) = 1 − ε0 > 1 − ε, so (x, T ) ∈
ΠS
ε (`

(2)
1 , Z

(n)
ρ ). Now we are searching for the best approximation of (x, T ) by a pair (y, F ) ∈

Π(`
(2)
1 , Z

(n)
ρ ). As usual, we have two options:

I. We can approximate the point x by e1 and then we can take F = T . In this case we
get

‖x− y‖ = 2δ. (13)

II. We can choose F which attains its norm at all points of the segment [e1, e2], and
then we can take y = x. In this case F (e1) and F (e2) must lie in the same face. Besides, if
F (e1) 6∈ Γ, we have ‖T (e1)− F (e1)‖ = 1− ρ >

√
2ε
√

2ρ
1−ρ for ε sufficiently small. To obtain

better estimation we must have F (e1) ∈ Γ and, so, F (e2) ∈ Γ. Then

‖T − F‖ > ‖T (e2)− F (e2)‖ > inf
h∈Γ
‖T (e2)− h‖.

Let us estimate the distance from T (e2) to the face Γ.

If h =
n∑
i=1

hi ∈ Γ, then |hi| 6 1 and z∗(h) = 1
ρn

n∑
i=1

hi = 1. So,
k∑
i=1

hi > ρn− (n− k), and

maxhi >
1

k
(ρn− (n− k)) = −1 +

4 + 4θ

n(1− ρ) + 2 + 2θ
.

Therefore,

‖T (e2)− h‖ > max
16i6k

|t− hi| > |t−maxhi| =
2nρ ε0

δ

n(1− ρ) + 2 + 2θ
. (14)

Now let us define δ to be the positive solution of the equation 2δ =
2nρ

ε0
δ

n(1−ρ)+2+2θ
. Then

δ = 1
2

√
2ε0

√
2ρ

1−ρ+(2+θ)/n
. Denote C(ε, ρ, n, θ) =

√
2ε
√

2ρ
1−ρ+(2+θ)/n

and C0 = C(ε0, ρ, n, θ).
So, with this δ estimation (13) gives us ‖x− y‖ = 2δ = C0, and estimation (14) gives us

‖T − F‖ >
2nρ ε0

δ

n(1− ρ) + 2 + 2θ
= C0.
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In that way, we have shown that ΦS(`
(2)
1 , Z

(n)
ρ , ε) > C0. As ε0 can be chosen arbitrarily close

to ε we obtain that ΦS(`
(2)
1 , Z

(n)
ρ , ε) > C(ε, ρ, n, θ̃) with θ̃ ∈ [−1/2, 1/2]. Consequently, we

have that Ψ(`
(2)
1 , Z

(n)
ρ ) >

√
2ρ

1−ρ+(2+θ̃)/n
. When n → ∞, we obtain the desired estimation

Ψ(ρ) >
√

2ρ
1−ρ .

4. Modified Bishop-Phelps-Bollobás moduli for operators. The following modificati-
on of the Bishop-Phelps-Bollobás theorem can be easily deduced from Proposition 2 just by
substituting η = ε, k =

√
ε.

Theorem 8 (Modified Bishop-Phelps-Bollobás theorem). Let X be a Banach space.
Suppose x ∈ BX and x∗ ∈ BX∗ satisfy x∗(x) > 1 − ε (ε ∈ (0, 2)). Then there exists
(y, y∗) ∈ SX ×X∗ with ‖y∗‖ = y∗(y) such that max{‖x− y‖, ‖x∗ − y∗‖} 6

√
ε.

The improvement in this estimate comparing to the original version appears because we
do not demand ‖y∗‖ = 1. It was shown in [11] that this theorem is sharp for a number of two-
dimensional spaces, which makes a big difference with the original Bishop-Phelps-Bollobás
theorem, where the only (up to isometry) two-dimensional space, for which the theorem is
sharp, is `(2)

1 . Bearing in mind this theorem it is natural to introduce the following quantities.

Definition 5. The modified Phelps-Bollobás modulus of a pair (X, Y ) is the function, which
is determined by the following formula:

Φ̃(X, Y, ε) = inf{δ > 0: ∀T ∈ BL(X,Y ), if x ∈ BX and ‖T (x)‖ > 1− ε, then there exist
y ∈ SX and F ∈ L(X, Y ) satisfying ‖F (y)‖ = ‖F‖, ‖x− y‖ < δ and ‖T − F‖ < δ}.

The modified spherical Bishop-Phelps-Bollobás modulus of a pair (X, Y ) is the function,
which is determined by the following formula:

Φ̃S(X, Y, ε) = inf{δ > 0: ∀T ∈ SL(X,Y ), if x ∈ SX and ‖T (x)‖ > 1− ε, then there exist
y ∈ SX and F ∈ L(X, Y ) satisfying ‖T (y)‖ = ‖T‖, ‖x− y‖ < δ and ‖T − F‖ < δ}.

By analogy with Theorem 1 we prove the next result.

Theorem 9. LetX and Y be Banach spaces such that Y has the property β with parameter ρ.
Then the pair (X, Y ) has the Bishop-Phelps-Bollobás property for operators and for any
ε ∈ (0, 1)

Φ̃S(X, Y, ε) 6 Φ̃(X, Y, ε) 6 min

{√
ε

√
1 + ρ

1− ρ
, 1

}
. (15)

The proof is similar to that of Theorem 1 but it has some modifications and we give it
here for the sake of clearness.

Proof. Consider T ∈ BL(X,Y ) and x ∈ BX such that ‖T (x)‖ > 1 − ε with ε ∈ (0, 1−ρ
1+ρ

).
Since Y has the property β, there is α0 ∈ Λ such that |y∗α0

(T (x))| > 1− ε. So, if we denote
x∗ = T ∗y∗α0

, we have x ∈ BX , x
∗ ∈ BX∗ with x∗(x) > 1− ε. We can apply formula (2) from

Lemma 1, for any k ∈ (0, 1). For every k̃ ∈ [ε, 1) let us take

k =
k̃(‖x∗‖ − (1− ε))

ε‖x∗‖
.
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The inequality ‖x∗‖ > x∗(x) > 1−ε implies that k > 0. On the other hand, k = k̃(1
ε
− (1−ε)
ε‖x∗‖) 6

k̃(1
ε
− (1−ε)

ε
) = k̃ < 1, so for this k we can find ζ∗ ∈ X∗ and z ∈ SX such that there exist

z∗ ∈ X∗ and z ∈ SX such that |z∗(z)| = ‖z∗‖ and

‖x− z‖ <
1− 1−ε

‖x∗‖

k
and ‖z∗ − x∗‖ < k‖x∗‖.

For a real number η satisfying η > ρ(k‖x∗‖+‖x∗‖·|1−‖z∗‖|)
‖z∗‖(1−ρ)

we define the operator S ∈ L(X, Y )
by the formula

S(t) = ‖z∗‖T (t) + [(1 + η)z∗(t)− ‖z∗‖T ∗(y∗α0
)(t)]yα0 .

Let us estimate the norm of S. Recall that we denote x∗ = T ∗y∗α0
. Thus for all y∗ ∈ Y ∗,

S∗(y∗) = ‖z∗‖T ∗(y∗) + [(1 + η)z∗ − ‖z∗‖x∗]y∗(yα0).

Since the set {y∗α : α ∈ Λ} is norming for Y it follows that ‖S‖ = supα‖S∗y∗α‖.

‖S‖ > ‖S∗(y∗α0
)‖ = (1 + η)‖z∗‖.

On the other hand for α 6= α0 we obtain

‖S∗(y∗α)‖ 6 ‖z∗‖+ ρ[‖z∗ − x∗‖+ ‖x∗‖ · |1− ‖z∗‖|+ η‖z∗‖] 6 (1 + η)‖z∗‖.

Therefore, ‖S‖ = ‖S∗(y∗α0
)‖ = ‖z∗‖ = |y∗α0

(S(z))| 6 ‖S(z)‖ 6 ‖S‖. So, we have ‖S‖ =
‖S(z)‖ = (1 + η)‖z∗‖.

Let us estimate ‖S − T‖.

‖S − T‖ = sup
α
‖S∗y∗α − T ∗y∗α‖.

Notice also that |1− ‖z∗‖| 6 ‖x∗ − z∗‖+ 1− ‖x∗‖ < k‖x∗‖+ 1− ‖x∗‖. For α = α0 we get

‖S∗y∗α0
− T ∗y∗α0

‖ = ‖(1 + η)z∗ − x∗‖ 6 ‖z∗ − x∗‖+ η‖z∗‖ <

<
k‖x∗‖(1 + ρ‖x∗‖) + ρ‖x∗‖(1− ‖x∗‖)

1− ρ
.

Then ‖x− z‖ < ε
k̃
and

‖S∗y∗α0
− T ∗y∗α0

‖ <
k̃ ‖x

∗‖−(1−ε)
ε

(1 + ρ‖x∗‖) + ρ‖x∗‖(1− ‖x∗‖)
1− ρ

6
k̃(1 + ρ)

1− ρ
.

The latter inequality holds, because if we consider the function

f(t) =
k̃ t−(1−ε)

ε
(1 + ρt) + ρt(1− t)

1− ρ

with t ∈ (1− ε, 1), then f ′ > 0, so max f = f(1) = k̃(1+ρ)
1−ρ . For α 6= α0 we obtain

‖S∗y∗α − T ∗y∗α‖ 6 |1− ‖z∗‖|+ ρ(‖z∗ − x∗‖+ ‖x∗‖ · |1− ‖z∗‖|+ η‖z∗‖) <

< k‖x∗‖+ 1− ‖x∗‖+
ρ

1− ρ
[k‖x∗‖ − ρk‖x∗‖+ ‖x∗‖ · |1− ‖z∗‖|−

−ρ‖x∗‖ · |1− ‖z∗‖|+ ρk‖x∗‖+ ρ‖x∗‖ · |1− ‖z∗‖|] 6

6 k‖x∗‖+ 1− ‖x∗‖+
ρ

1− ρ
[k‖x∗‖+ ‖x∗‖ · (k‖x∗‖+ 1− ‖x∗‖)].
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Substituting the value of k we get

‖S∗y∗α − T ∗y∗α‖ <
1− ρ(1− ‖x∗‖)

1− ρ

[
k̃
‖x∗‖ − (1− ε)

ε
+ 1− ‖x∗‖

]
+

+
ρk̃

1− ρ
‖x∗‖ − (1− ε)

ε
6
k̃(1 + ρ)

1− ρ
.

To get the latter inequality we again use the fact that the function

f1(t) =
1− ρ(1− t)

1− ρ

[
k̃
t− (1− ε)

ε
+ 1− t

]
+

ρk̃

1− ρ
t− (1− ε)

ε

is increasing if k̃ > ε, so max f1 = f1(1) = k̃(1+ρ)
1−ρ . So, ‖T − S‖ 6 k̃(1+ρ)

1−ρ .

Let us substitute k̃ =
√

ε(1−ρ)
1+ρ

(here we need ε < 1+ρ
1−ρ which holds for any ε ∈ (0, 1) and

also ε < 1−ρ
1+ρ

). Then we obtain

max{‖z − x‖, ‖T − S‖} 6

√
ε(1 + ρ)

1− ρ
.

Finally, if ε > 1−ρ
1+ρ

, we can always approximate (x, T ) by the same point and zero operator,
so max{‖z − x‖, ‖T − S‖} 6 1.

The above theorem implies that if β(Y ) = 0, then Φ̃S(X, Y, ε) 6 Φ̃(X, Y, ε) 6
√
ε. We

are going to demonstrate that this estimation is sharp for X = `
(2)
1 , Y = R.

Theorem 10. Φ̃S(`
(2)
1 ,R, ε) = Φ̃(`

(2)
1 ,R, ε) =

√
ε, ε ∈ (0, 1).

Proof. We must show that for every 0 < ε < 1 and for every δ > 0 there is a pair (x, x∗)

from ΠS
ε (`

(2)
1 ,R) such that for every pair (y, y∗) ∈ S

`
(2)
1
× `(2)
∞ with |y∗(y)| = ‖y∗‖

max {‖x− y‖, ‖x∗ − y∗‖} >
√
ε− δ. (16)

Fix ε0 < ε such that
√
ε0 >

√
ε− δ. Take the point x := (1−

√
ε0
2

)e1 + (
√
ε0
2

)e2, and the
functional x∗(z) := z1 + (1− 2

√
ε0)z2. Notice that x∗(x) = 1− ε0 > 1− ε.

Consider the set U of those y ∈ SX that ‖x− y‖ < √ε0. U is the intersection of SX with
the open ball of radius

√
ε0 centered in x. As ‖x−e1‖ =

√
ε0, and ‖x−e2‖ = 2−√ε0 >

√
ε0,

so, U ⊂]e1, e2[, and for every y = ae1 + be2 ∈ U a > 0 and b > 0.
Assume that |y∗(y)| = ‖y∗‖ for some y ∈ U and ‖x∗ − y∗‖ 6 √ε0. Then we are forced to

have y∗ = (y∗(e1), y∗(e2)), where |y∗(e1)| = |y∗(e2)| and y∗(e1) · y∗(e2) > 0. Notice that

|x∗(e1)− y∗(e1)| = |1− y∗(e1)| 6 ‖x∗ − y∗‖ 6
√
ε⇒ y∗(e1) > 1−

√
ε0,

|x∗(e2)− y∗(e2)| = |1− 2
√
ε0 − y∗(e2)| 6 ‖x∗ − y∗‖ 6

√
ε0 ⇒ y∗(e2) 6 1−

√
ε0.

Then y∗ = (1−√ε0, 1−
√
ε0), so ‖x∗ − y∗‖ =

√
ε0 >

√
ε− δ. It follows that inequality (16)

holds, as desired.

Also with the same space Y = Yρ equipped with the norm (10) we have an estimation
from below which almost coincides with estimation (15) from above for values of ρ close to 1.
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Theorem 11. Let ρ ∈ [1/2, 1), 0 < ε < 1. Then, for the space Y = Yρ one has

Φ̃S(`
(2)
1 , Y, ε) > min

{√
ε

√
2ρ

1− ρ
, 1

}
.

5. An open problem.

Problem 1. Is it true, that ΦS(X,R, ε) 6 min{
√

2ε, 1} for all real Banach spaces X?

In order to explain what do we mean, recall that for the original Bishop-Phelps-Bollobás
modulus the estimation

ΦS
X(ε) 6

√
2ε (17)

holds true for all X. In other words, for every (x, x∗) ∈ SX × SX∗ with x∗(x) > 1− ε, there
is (y, y∗) ∈ SX × SX∗ with y∗(y) = 1 such that max{‖x− y‖ <

√
2ε, ‖x∗ − y∗‖} <

√
2ε.

When we take Y = R in the definition of ΦS(X, Y, ε), the only difference with ΦS
X(ε)

is that by attaining norm we mean |y∗(y)| = 1, instead of y∗(y) = 1. So, in the case of
ΦS(X,R, ε) we have more possibilities to approximate (x, x∗) ∈ SX×SX∗ with x∗(x) > 1−ε:

(y, y∗) ∈ SX × SX∗ with y∗(y) = 1 or y∗(y) = −1.

Estimation (17) is sharp for the two-dimensional real `1 space: ΦS

`
(2)
1

(ε) =
√

2ε, but, as we

have shown in Theorem 4 ΦS(`
(2)
1 ,R, ε) = min{

√
2ε, 1}.

Estimations ΦS

`
(2)
1

(ε) =
√

2ε, and ΦS(`
(2)
1 ,R, ε) = min{

√
2ε, 1}. coincide for ε ∈ (0, 1/2),

but for bigger values of ε there is a significant difference. We do not know whether the
inequality ΦS(X,R, ε) 6 min{

√
2ε, 1} holds true for all X.

Moreover, in all examples that we considered we always were able to estimate ΦS(X, Y, ε)
from above by 1. So, we don’t know whether the statement of Theorem 1 can be improved
to

ΦS(X, Y, ε) 6 min

{√
2ε

√
1 + ρ

1− ρ
, 1

}
.
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