Asymptotic behaviour of means of nonpositive Msubharmonic functions 

Author 
chyzhykov@yahoo.com; urkevych@gmail.com
Ivan Franko National University of Lviv, Lviv, Ukraine

Abstract 
We describe growth and decrease of $p$th means, $1\leq p\leq\frac{2n1}{2(n1)}$, of nonpositive $\mathcal{M}$subharmonic functions
in the unit ball in $\mathbb{C}^n$ in terms of smoothness properties of a measure.
As consequence we obtain a haracterization of asumptotic behaviour for means of Poisson integrals in the unit ball
defined by a positive measure.

Keywords 
Msubharmonic function; Mharmonic function; Green potential; unit ball; invariant Laplacian;
Riesz measure

DOI 
doi:10.15330/ms.47.1.2026

Reference 
1. I. Chyzhykov, M. Voitovych, Growth description of pth means of the Green potential in the unit ball,
Complex Variables and Elliptic Equations, 52 (2017), ¹7, 899913.
2. I. Chyzhykov, M. Voitovych, On the growth of the CauchySzego transform in the unit ball, J. Math. Phys. Anal, Geom., 11 (2015), ¹3, 236244. 3. I. Chyzhykov, Growth of analytic functions in the unit disc and complete measure in the sense of Grishin. Mat. Stud., 29 (2008), 3544. 4. I. Chyzhykov, Growth of pth means of analytic and subharmonic function in the unit disk and angular distribution of zeros. arXiv:1509.02141v2 [math.CV] (2015), 119. 5. S.J. Gardiner, Growth properties of pth means of potentials in the unit ball, Proc. Amer. Math. Soc., 103 (1988), 861869. 6. A. Grishin, Continuity and asymptotic continuity of subharmonic functions, Math. Physics, Analysis, Geometry, ILPTE, 1 (1994), 193215. (in Russian) 7. K.T. Khan, J. Mitchell, Greens function on the classical Cartan domains, MRC Technical Summary Report, (1967), ¹500. 8. W. Rudin, Theory functions in the unit ball in $\mathbb{C}^n$, BerlinHeidelberg, New York: Springer Verlag (1980). 9. M. Stoll, Invariant Potential Theory in the Unit Ball of $\mathbb{C}^n$, Cambridge University Press, 1994. 10. M. Stoll, Rate of growth of pth means of invariant potentials in the unit ball of $\mathbb{C}^n$, J. Math. Anal. Appl., 143 (1989), 480499. 11. M. Stoll, Rate of growth of pth means of invariant potentials in the unit ball of $\mathbb{C}^n$, II, J. Math. Anal. Appl., 165 (1992), 374398. 12. M. Stoll, On the rate of growth of the means $M_p$ of holomorphic and pluriharmonic functions on the ball, J. Math. Anal. Appl., 93 (1983), 109127. 13. M. Stoll, Harmonic and Subharmonic Function Theory on the Hyperbolic Ball, London Mathematical Society Lecture Note Series, V.431, 2016. 14. D. Ulrich, Radial limits of Msubharmonic functions, Trans. Amer. Math. Soc., 292 (1985), 501518. 
Pages 
2026

Volume 
47

Issue 
1

Year 
2017

Journal 
Matematychni Studii

Full text of paper  
Table of content of issue 