Continual approximate solution of the Boltzmann equation with arbitrary density

Author
V. D. Gordevskyy, E. S. Sazonova
V.N. Karazin Kharkiv National University
Abstract
The new explicit approximate solution of the non-linear Boltzmann equation was constructed. It has the form of the continual distribution in the case of global Maxwellians with arbitrary density. We obtained some sufficient conditions which minimized the uniform-integral remainder and pure integral remainder between the left- and the right-hand sides of this equation.
Keywords
hard spheres; Boltzmann equation; Maxwellian; remainder; continual distribution; arbitrary density
DOI
doi:10.15330/ms.45.2.194-204
Reference
1. C. Cercignani, The Boltzman Equation and its Applications, Springer, New York, 1988.

2. M.N. Kogan, The Dynamics of a Rarefied Gas, Nauka, Moscow, 1967.

3. T. Carleman, Problems Mathematiques dans la Theorie Cinetique des Gas, Almqvist & Wiksells, Uppsala, 1957.

4. A.V. Bobylev, Exact solutions of the Boltzmann equation, Sov. Phys. Dokl., 20 (1976), 822–824.

5. A.V. Bobylev, The Poincare theorem, the Boltzmann equation, and equation of the Korteweg-de Vries type, Sov. Phys. Dokl., 26 (1981), 166–169.

6. K. Krook, T.T. Wu, Exact solutions of the Boltzmann equation, Phys. Fluids., 20 (1977), ¹10(1), 1589– 1595.

7. H.M. Ernst, Exact solutions of the nonlinear Boltzmann equation, J. Statist. Phys., 34 (1984), ¹5/6, 1001–1017.

8. V.D. Gordevskyy, Biflow distributions with screw modes, Theor. Math. Phys., 126(2) (2001), 234–249.

9. V.D. Gordevskyy, Rotating flows with acceleration and compacting in the model of hard spheres, Theor. Math. Phys., 161 (2009), ¹2, 1558–1566.

10. V.D. Gordevskyy, Transitional regime between vortical states of a gas, Nonl. Analysis (NA 3752), 53 (2003), ¹3-4, 481–494.

11. V.D. Gordevskyy, Vorticies in a gas of hard spheres, Theor. Math. Phys., 135 (2003), ¹2, 704–713.

12. V.D. Gordevskyy, Trimodal approximate solutions of the non-linear Boltzmann equation, Math. Meth. Appl. Sci., 21 (1998), 1479–1494.

13. V.D. Gordevskyy, E.S. Sazonova, Continuum analogue of bimodal distribution, Theor. Math. Phys., 171 (2012), ¹3, 839–847.

14. V.D. Gordevskyy, An approximate two-flow solution to the Boltzmann equation, Theor. Math. Phys., 114 (1998), ¹1, 99–108.

15. L.D. Ivanov, Variations of sets and functions, Nauka, Moscow, 1975.

16. V.S. Vladimirov, Equations of the mathematical physics, Nauka, Moscow, 1971.

Pages
194-204
Volume
45
Issue
2
Year
2016
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue