Existence and uniqueness of solutions for degenerate nonlinear elliptic equations in weigthed Sobolev spaces

Author
A. C. Cavalheiro
Department of Mathematics, State University of Londrina, Brazil
Abstract
In this paper we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated to the degenerate nolinear elliptic equation \begin{equation*} -\sum_{j=1}^n D_j{\bigl[}{\cal A}_j(x, {\nabla}u)\, {\omega}_2(x){\bigr]} + b(x, u)\,{\omega}_1(x) + g(x)\,u(x)\\ = f_0(x) - \sum_{j=1}^nD_jf_j(x) \ \ {\rm on } \ \ {\Omega} \end{equation*} in the setting of the weighted Sobolev spaces ${\rm W}_0^{1,p}(\Omega , {\omega}_1,{\omega}_2)$.
Keywords
nonlinear degenerate elliptic equation; weighted Sobolev space
DOI
doi:10.15330/ms.45.2.182-193
Reference
1. M. Chipot, Elliptic equations: an introductory course, Birkhauser, Berlin, 2009.

2. P. Drabek, J. Milota, Methods of nonlinear analysis, Birkh¨auser, Berlin, 2007.

3. E. Fabes, D. Jerison, C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier, 32 (1982), 151–182.

4. S. Fucik, O. John and A. Kufner, Function spaces, Noordhoff International Publ., Leyden, 1977.

5. E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differenctial Equations, 7 (1982), 77–116.

6. B. Franchi, R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approch, Ann. Sc. Norm. Super. Pisa Cl. Sci.(5), 14 (1987), 527–568.

7. J. Garcia-Cuerva, J.L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, 116, (1985).

8. J. Heinonen, T. Kilpelainen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, 1993.

9. A. Kufner, Weighted Sobolev spaces, John Wiley & Sons, Chichester, 1985.

10. A. Kufner, B.Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin., 25 (1984), 573–554.

11. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226.

12. A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, San Diego, 1986.

13. B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Math., V.1736, Springer-Verlag, 2000.

14. E. Zeidler, Nonlinear functional analysis and its applications, vol.II/A, Springer-Verlag, New York, 1990.

15. E. Zeidler, Nonlinear Functional Analysis and its Applications, V.II/B, Springer-Verlag, New Yor,k 1990.

Pages
182-193
Volume
45
Issue
2
Year
2016
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue