Processing math: 100%

On formulaes of integration by parts for special type of power functions (in Ukrainian)

Author
O. M. Buhrii
Ivan Franko National University of Lviv
Abstract
We investigate properties of the function ψα(u), where α>0, uCm(¯G) or uWm,p(G), GRN, ψα is some power function, for example, ψα(s)=|s|α1s. In particular, some formulaes of integration by parts and differentiation for observed functions are proved.
Keywords
integration by parts formulae; differentiation formulae; exponential functions
DOI
doi:10.15330/ms.45.2.118-131
Reference
1. Metafune G., Spina C. An integration by part formula in Sobolev spaces// Mediterr. J. Math. – 2008. – V.5. – P. 357–369.

2. Lions J.-L., Strauss W.A. Some non-linear evolution equations// Bulletin de la S. M. F. – 1965. – V.93. – P. 43–96.

3. Gajewski H., Groger K., Zacharias K. Nichtlineare operatorgleichungen und operatordifferentialgleichungen. – Moscow, 1978, 336 p. (in Russian)

4. Ladyzenskaya O.A., Uraltseva N.N. Linear and quasilinear elliptic equations. – Moscow, 1973, 576 p. (in Russian)

5. Kinderlehrer D., Stampacchia G. An introduction to variational inequalities and their applications – Moscow, 1983, 256 p. (in Russian)

6. Baiocchi C., Capelo A. Variational and quasivariational inequalities. Applications to free boundary problems. – Moscow, 1988, 448 p. (in Russian)

7. Kolmogorov A.N., Fomin S.V. Theory of functions and functional analysis. – Moscow, 1972, 496 p. (in Russian)

8. Bystrom J. Sharp constants for some inequalities connected to the p-Laplace operator// Jour. of Ineq. in Pure and Appl. Math. – 2005. – V.6, Issue2. – Article 56.

9. Gorodetskyi V.V., Nagnybida N.I., Nastasiev P.P. Methods of solving of function analysis problems. – Kyiv, 1990, 479 p. (in Russian)

Pages
118-131
Volume
45
Issue
2
Year
2016
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue