Classical solution of the inverse problem for fractional diffusion equation under time-integrated over-determination condition (in Ukrainian) |
|
Author |
lhp@ukr.net, alopushanskyj@gmail.com, myausolya@mail.ru
Ivan Franko National University of Lviv, University of Zheshiv, National University Lviv Polytechnic
|
Abstract |
We prove the correctness of the inverse problem on determination of a~pare of functions: a~classical solution $u$ of the first boundary value problem for linear diffusion equation
$ D^\alpha_t u-u_{xx}=F_0(x), (x,t)\in (0,l)\times (0,T]$ with regularized
fractional derivative of order $\alpha\in (0,1)$ with respect to time and function $F_0(x)$ under integral by time over-determination
condition.
|
Keywords |
fractional derivative; inverse problem; Mittag-Leffler function, diffusion equation
|
DOI |
doi:10.15330/ms.44.2.215-220
|
Reference |
1. Caputo M. Linear model of dissipation whose Q is almost frequency independent// II. Geofis. J. R. Astr.
Soc. 1967. V.13. P. 529539.
2. Kochubei A.N. Cauchy problem for the evolutionary equation fractional order// Diff. Uravn. 1989. V.25, Ή8. P. 13591368. (in Russian) 3. Povstenko Y. Linear fractional diffusion-wave equation for scientists and engeneers. New-York, Birkhauser, 2015. 460 p. 4. Aleroev T. S., Kirane M., Malik S. A. Determination of a source term for a time fractional diffusion equation with an integral type over-determination condition// Electronic J. of Differential Equations. 2013. V.270. P. 116. 5. Cheng J., Nakagawa J., Yamamoto M. and Yamazaki T. Uniqueness in an inverse problem for a onedimentional fractional diffusion equation// Inverse Problems. 2009. V. 25. P. 116. 6. Jim B., Rundell W. A turorial on inverse problems for anomalous diffusion processes // Inverse Problems. 2015. V. 31. 7. Lopushanska H., Rapita V. Inverse coefficient problem for semi-linear fractional telegraph equation// Electronic J. of Differential Equations. 2015. V.153. P. 113. 8. Nakagawa J., Sakamoto K., Yamamoto M. Overview to mathematical analysis for fractional diffusion equation new mathematical aspects motivated by industrial collaboration// Journal of Math-for- Industry. 2010. V.2A. P. 99108. 9. Rundell W., Xu X., Zuo L. The determination of an unknown boundary condition in fractional diffusion equation// Applicable Analysis. 2012. V.1. P. 116. 10. Zhang Y., Xu X. Inverse source problem for a fractional diffusion equation// Inverse Problems. 2011. V.27. P. 112. 11. Kuz A.M. The problem with integral conditions for factorized parabolic operator with variable coefficients// Visnyk Nat. Univ. Lviv Polytechnic. Phys.-Mat. Sci. 2012. Ή740. P. 2434. (in Ukrainian) 12. Ptashnyk B.Y., Ilkiv V.S., Kmit I.Ya., Polishchuk V.M. Nonlocal boundary value problems for equations with partial derivatives. Kiev, Naukova dumka, 2002. 416 p. (in Ukrainian) 13. Pulkina L.S. Nonlocal problem for equation of heat-conducting// Nonclassical problems of mathematical physics, IM SO A, Novosibirsk. 2005. P. 231239. (in Russian) 14. Pukalsky I.D. Parabolic Nonlocal boundary value problem and the optimal control problem for linear equations with degeneration// Prykl. Problems. Mechanics and Mathematics. 2012. V.10. P. 102 114. (in Ukrainian) 15. Isaryuk I.M., Pukalsky I.D. Boundary value problems for parabolic equations with nonlocal conditions and degenerations// Ukr. Mat. Visnyk. 2014. V.11, Ή4. P. 480496. (in Russian) 16. Vladimirov V.S. Generelized functions in mathematical physycs. 4th Edition, Nauka, Moskow, 1981. 512 p. (in Russian) 17. Dzhrbashyan M.M. Integral transforms and representations of functions in the complex domain. Nauka, Moskow, 1966. 671 p. (in Russian) 18. Pollard H. The completely monotonic character of the Mittag-Leffler function $E_\alpha(-x)$// Bull. Amer. Math. Soc. 1948. V.68, Ή5. P. 602613. 19. Kilbas A.A., Sajgo M. H-Transforms: Theory and Applications. Boca-Raton: Chapman and Hall/CRC. 2004. 401 p. |
Pages |
215-220
|
Volume |
44
|
Issue |
2
|
Year |
2015
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |