A remark to the growth of positive functions and its application to Dirichlet series |
|
Author |
m_m_sheremeta@list.ru
Ivan Franko National University of Lviv
|
Abstract |
For a function $\Phi$ continuous on $(-\infty, +\infty)$ increaing to $+\infty$
the lower and upper estimates for
$\frac{\alpha(\Phi(q\sigma))}{\alpha^p(\Phi(\sigma))}$ are found, where $p>1, q>1$ and
$\alpha$ is positive function continuous on $[x_0,+\infty)$, increasing to
$+\infty$. The above results applied to Dirichlet series with positive
exponents.
|
Keywords |
positive functions; Dirichlet series; maximum modulus
|
DOI |
doi:10.15330/ms.44.2.161-170
|
Reference |
1. Goodstein R.L. Complex functions. New York, 1965.
2. Singh S.K. On the maximum modulus and the means of an entire function// Matem. Visnyk. 1976. V.13(28). P. 211213. (in Ukrainian) 3. Sheremeta M.N. Asymptotic behaviour of Mittag-Leffler type functions and its application 1// Teoriya funcii, func. anal., ich prilozh. 1970. V.10. P. 97111. (in Russian) 4. Sheremeta M.N. Asymptotic behaviour of Mittag-Leffler type functions and its application 2// Teoriya funcii, func. anal., ich prilozh. 1971. V.11. P. 4154. (in Russian) 5. Pjanylo Ja.D., Sheremeta M.N. On the growth of entire functions represented by Dirichlet series// Izv. vuzov. Matem. 1975. Ή10. P. 9193. (in Russian) 6. Hal Yu.M., Sheremeta M.N. On the growth of analytic in a half-plane functions represented by Dirichlet series// Dokl. AN USSR. Ser. A. 1978. Ή12. P. 10651067. (in Russian) 7. Filevych P.V. To the Sheremeta theorem concerning relations between the maximal term and the maximum modulus of entire Dirichlet series// Mat. Stud. 2000. V.13, Ή2. P. 139144. 8. Sheremeta M.N. Full equivalence of the logarithms of the maximum modulus and the maximal term of an entire Dirichlet series// Matem. Zametki. 1990. V.47, Ή6. P. 119123. (in Russian) |
Pages |
161-170
|
Volume |
44
|
Issue |
2
|
Year |
2015
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |