On the univalence of entire functions of bounded l-index |
|
| Author |
m_m_sheremeta@list.ru
Ivan Franko National University of Lviv
|
| Abstract |
For an entire function $f$ it is established a relation between the $l$-index boundedness of the derivative $f'$ and
the existence for each $z_0\in \mathbb{C}$ of the derivative $f^{(k)}$ univalent in the disk $\{ z:
|z-z_0|\leq\delta/l(|z_0|)\}.$
|
| Keywords |
entire function; l-index boundedness; univalence
|
| DOI |
doi:10.15330/ms.43.2.185-188
|
| Reference |
1. Kuzyk A.D., Sheremeta M.M. Entire functions of bounded l-index// DAN USSR, ser.A. – 1988. – №6. –
P. 15–17. (in Ukrainian)
2. Sheremeta M.M. Analytic functions of bounded index. – Lviv: VNTL Publishers, 1999. – 141 p. 3. de Branges L. A proof of the Bieberbach conjecture// Acta Math. – 1985. – V.154, №1. – P. 137–152. |
| Pages |
185-188
|
| Volume |
43
|
| Issue |
1
|
| Year |
2015
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |