Endomorphisms of free abelian monogenic digroups

Author
Yu. V. Zhuchok
Kyiv National Taras Schevchenko University, Faculty of Mechanics and Mathematics
Abstract
We construct a free abelian monogenic digroup and describe its endomorphism semigroup.
Keywords
free abelian digroup; dimonoid; congruence; endomorphism
DOI
doi:10.15330/ms.43.2.144-152
Reference
1. Loday J.-L., Dialgebras, in: Dialgebras and related operads, Lect. Notes Math., 1763 (2001) Springer- Verlag, Berlin, 7–66.

2. Liu K., Transformation digroups, preprint, available at http://arxiv.org/abs/math/0409265.

3. Kinyon M.K., Leibniz algebras, Lie racks, and digroups, J. Lie Theory, 17 (2007), ı1, 99–114.

4. Phillips J.D., A short basis for the variety of digroups, Semigroup Forum, 70 (2005), 466–470.

5. Crompton C., Scalici L., The structure of digroups, American Journal of Undergraduate research, 5 (2006), ı2, 21–27.

6. Felipe R., Generalized Loday algebras and digroups, Comunicaciones del CIMAT, ıI-04-01/21-01-2004.

7. Liu K., The generalizations of groups, Research Monographs in Math., V.1, 153 Publishing: Burnaby, 2004.

8. Zhuchok A.V., Dimonoids, Algebra and Logic, 50 (2011), ı4, 323–340.

9. Zhuchok A.V., Free commutative dimonoids, Algebra and Discrete Mathematics, 9 (2010), ı1, 109–119.

10. Zhuchok Yu.V., Representations of ordered dimonoids by binary relations, Asian-European J. Math., 7 (2014), 1–13.

Pages
144-152
Volume
43
Issue
1
Year
2015
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue