Endomorphisms of free abelian monogenic digroups |
|
Author |
zhuchok_y@mail.ru
Kyiv National Taras Schevchenko University, Faculty of Mechanics and Mathematics
|
Abstract |
We construct a free abelian monogenic digroup and describe its endomorphism semigroup.
|
Keywords |
free abelian digroup; dimonoid; congruence; endomorphism
|
DOI |
doi:10.15330/ms.43.2.144-152
|
Reference |
1. Loday J.-L., Dialgebras, in: Dialgebras and related operads, Lect. Notes Math., 1763 (2001) Springer-
Verlag, Berlin, 766.
2. Liu K., Transformation digroups, preprint, available at http://arxiv.org/abs/math/0409265. 3. Kinyon M.K., Leibniz algebras, Lie racks, and digroups, J. Lie Theory, 17 (2007), ı1, 99114. 4. Phillips J.D., A short basis for the variety of digroups, Semigroup Forum, 70 (2005), 466470. 5. Crompton C., Scalici L., The structure of digroups, American Journal of Undergraduate research, 5 (2006), ı2, 2127. 6. Felipe R., Generalized Loday algebras and digroups, Comunicaciones del CIMAT, ıI-04-01/21-01-2004. 7. Liu K., The generalizations of groups, Research Monographs in Math., V.1, 153 Publishing: Burnaby, 2004. 8. Zhuchok A.V., Dimonoids, Algebra and Logic, 50 (2011), ı4, 323340. 9. Zhuchok A.V., Free commutative dimonoids, Algebra and Discrete Mathematics, 9 (2010), ı1, 109119. 10. Zhuchok Yu.V., Representations of ordered dimonoids by binary relations, Asian-European J. Math., 7 (2014), 113. |
Pages |
144-152
|
Volume |
43
|
Issue |
1
|
Year |
2015
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |