The Riesz measures and a representation of multiplicatively periodic $\delta$-subharmonic functions in a punctured Euclidean space

Author
V. S. Khoroshchak, A. A. Kondratyuk
Ivan Franko National University of Lviv
Abstract
We describe the Riesz measures of multiplicatively periodic $\delta$-subharmonic functions in ${\mathbb{R}^{m}}\backslash\{0\}$, $m\geq3$ and give their integral representations.Riesz measure; multiplicatively periodic function; $\delta$-subharmonic function; distribution function of a measure
Keywords
Riesz measure; multiplicatively periodic function; $\delta$-subharmonic function; distribution function of a measure
DOI
doi:10.15330/ms.43.1.61-65
Reference
1. O. Rausenberger, Lehrbuch der Theorie der Periodischen Funktionen einer variabeln, Leipzig, Druck und Verlag von B.G.Teubner, 1884, 470 p.

2. Y. Hellegouarch, Invitation to the mathematics of Fermat-Wiles, Academic Press, 2002, 381 p.

3. G. Valiron, Cours d’Analyse Mathematique, Theorie des fonctions, 2nd Edition, Masson et.Cie., Paris, 1947, 522 p.

4. A.A. Kondratyuk, Loxodromic meromorphic and $\delta$-subharmonic functions, Proceedings of the Workshop on Complex Analysis and its Applications to Differential and Functional Equations, In the honour of ILpo Laine’s 70th birthday, Publications of the University of Eastern Finland, Reports and Studies in Forestry and Natural Sciences, ¹14, University of Eastern Finland, Joensuu, Finland, 2014, 89–99.

5. A.A. Kondratyuk, V.S. Zaborovska, Multiplicatively periodic subharmonic functions in the punctured Euclidean space, Mat. Stud., 40 (2013), 159–164.

6. W.K. Hayman, P.B. Kennedy, Subharmonic functions, V.1, Academic Press, London, New York, San Francisco, 1976.

7. O. Gnatiuk, A. Kondratyuk, Yu. Kudjavina, Classification of isolated singularities of subharmonic functions, Visnyk Lviv. Univ., Ser. Mech. Math., 74 (2011), 52–60.

Pages
61-65
Volume
43
Issue
1
Year
2015
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue