Questions related to the K-theoretical aspect of Bezout rings with various stable range conditions |
|
Author |
zabavskii@gmail.com
Ivan Franko National University of Lviv
|
Abstract |
We provide a list of open problems that are connected to the commutative and noncommutative
ring theory, K-theory and homological algebra. Some problems are solved now completely,
some partially, and most of them, remaining still open, are supplemented with ideas and hints.
|
Keywords |
Bezout ring; K-theory; elementary divisor ring; Hermite ring; stable range; exchange ring;
adequate ring; morphic ring
|
Reference |
1. Ara P., Goodearl K.R., O’Meara K.C., Pardo E. Separative cancellation for projective modules over
exchange rings// Israel J. Math. – 1998. – V.105, №1. – P. 105–137.
2. Bass H. K-theory and stable algebra// Publ. Math. – 1964. – V.22. – P. 5–60. 3. Colby R.R. Rings which have flat injective modules// J. Algebra. – V.35. – 1975. – P. 239–252. 4. Cohn P., Free rings and their relations. – Moscow: Mir., 1976. (in Russian) 5. Contessa M. On pm-rings// Comm. Algebra. – 1982. – V.10, №1. – P. 93–108. 6. Contessa M. On certain classes of PM-rings// Communications in Algebra. – 1984. – V.12. – P. 1447– 1469. 7. De Marco G., Orsati A. Commutative rings in which every prime ideal is contained in a unique maximal ideal// Proc. Amer. Math. Soc. – 1971. – V.30, №3. – P. 459–466. 8. Garkusha G.A. FP-injective and weakly quasi-frobenius rings// Zapiski nauch. sem. POMI. – 1999. – V.265. – P. 110–129. (in Russian) 9. Gatalevych A. On adequate and generalized adequate duo-rings and elementary divisor duo-rings// Mat. Stud. – 1998. – V.9. – P. 115–119. 10. Gillman L., Henriksen M. Rings of continuous functions in which every finitely generated ideal is principal// Trans. Amer. Math. Soc. – 1956. – V.82, №2. – P. 366–391. 11. Glaz S. Commutative Coherent Rings. – Springer-Verlag, 1989. – 347p. 12. Goodearl K.R. Von Neumann Regular Rings. – London: Pitman, 1979. – 369p. 13. Henriksen M. Some remarks on elementary divisor rings II// Michigan Math. J. – 1955. – V.3, №2. – P. 159–163. 14. Jondrup S. Rings in which pure ideals are generated by idempotents// Math. Scand. – 1972. – V.30 – P. 177–185. 15. Kaplansky I. Elementary divisors and modules// Trans. Amer. Math. Soc. – 1949. – V.66. – P. 464–491. 16. Khurana D., Marks G., Srivastava A.K. On unit-central rings// Springer: Advances in Ring Theory, Trends in Mathematics, Birkhauser Verlag Basel/Switzerland, 2010. - P. 205–212. 17. Lam T.Y., Dugas A.S. Quasi-duo rings and stable range descent// J. Pure Appl. Alg. – 2005. – V.195. – P. 243–259. 18. McGovern W.W. Neat rings// J. Pure Appl. Algebra. – V.205, №2. – 2006. – P. 243–265. 19. Nicholson W.K. Lifting idempotents and exchange rings// Trans. Amer. Alath. Soc. – 1977. – V.229. – P. 269–278. 20. Nicholson W.K. Rings whose elements are quasi-regular or regular// Aequationes Mathematicae. – 1973. – V.9 – P. 64–70. 21. Nicholson W.K., Sanchez Campos E. Rings with the dual of the isomorphism theorem// J. Algebra. – 2004. – V.271. – P. 391–406. 22. Nicholson W.K., Yousif M.F., Quasi-Frobenius rings. – Cambridge University Press, 2003. 23. Roitman J., An introduction to homological algebra. – Academic Press, 1979. 24. Shores T. Modules over semihereditary Bezout rings// Proc. Amer. Math. Soc. – V.46, №2. – 1974. – P. 211–213. 25. Stenstrom B. Coherent rings and FP-injective modules// J. London Math. Soc. – V.2. – 1970. – P. 323– 329. 26. Tuganbaev A.A. Elementary divisor rings and distributive rings// Uspekhi. Mat. Nauk. – 1991. – V.46, №6. – P. 219–220. (in Russian) 27. Tuganbaev A.A., Rings theory. Arithmetical modules and rings. – Miscow: MTsNMO, 2009. – 472p. (in Russian) 28. Vamos P. 2-good rings// Quart. J. Math. – 2005. – V.56. – P. 417–430. 29. Vasiunyk I.S., Zabavsky B.V. Rings of almost unit stable range one// Ukr. Mat. Zh. – 2011. – V.63, №6. – P. 840–843. (in Ukrainian) 30. Vasserstein L.N. The stable rank of rings and dimensionality of topological spaces// Functional Anal. Appl. – 1971. – V.5. – P. 102–110. 31. Yu H.-P. On quasi-duo rings// Glasgow Math. J. – 1995. – V.37. – P. 21–31. 32. Zabavsky B.V. Diagonal reduction of matrices over rings. Mathematical Studies: Monograph Series. V.XVI. – Lviv: VNTL Publishers, 2012. – 251 p. 33. Zabavsky B.V. Fractionally regular Bezout rings// Mat. Stud. – 2009. – V.32, №1. – P. 76–80. 34. Zabavsky B.V. Diagonal reduction of matrices over finite stable range rings// Mat. Stud. – 2014. – V.41, №1. – P. 101–108. 35. Zabavsky B.V., Bilyavs’ka S.I. Every zero adequate ring is an exchange ring// Fundam. Prikl. Mat. – 2012. – V.17, №3 – P. 61–66. (in Russian) 36. Zabavsky B.V., Bilavska S.I.Weak global dimension of finite homomorphic images of commutative Bezout domain// Prykl. Probl. Mat. and Mech. – 2012. – V.10. – P. 71–73. (in Ukrainian) 37. Zabavsky B.V., Komarnytskii N.Ya. Distributive domains with elementary divisors// Ukr. Mat. Zh. – 1990. – V.42, №7. – P. 1000–1004. (in Russian) |
Pages |
89-103
|
Volume |
42
|
Issue |
1
|
Year |
2014
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |