Questions related to the K-theoretical aspect of Bezout rings with various stable range conditions |
|
Author |
zabavskii@gmail.com
Ivan Franko National University of Lviv
|
Abstract |
We provide a list of open problems that are connected to the commutative and noncommutative
ring theory, K-theory and homological algebra. Some problems are solved now completely,
some partially, and most of them, remaining still open, are supplemented with ideas and hints.
|
Keywords |
Bezout ring; K-theory; elementary divisor ring; Hermite ring; stable range; exchange ring;
adequate ring; morphic ring
|
Reference |
1. Ara P., Goodearl K.R., OMeara K.C., Pardo E. Separative cancellation for projective modules over
exchange rings// Israel J. Math. 1998. V.105, Ή1. P. 105137.
2. Bass H. K-theory and stable algebra// Publ. Math. 1964. V.22. P. 560. 3. Colby R.R. Rings which have flat injective modules// J. Algebra. V.35. 1975. P. 239252. 4. Cohn P., Free rings and their relations. Moscow: Mir., 1976. (in Russian) 5. Contessa M. On pm-rings// Comm. Algebra. 1982. V.10, Ή1. P. 93108. 6. Contessa M. On certain classes of PM-rings// Communications in Algebra. 1984. V.12. P. 1447 1469. 7. De Marco G., Orsati A. Commutative rings in which every prime ideal is contained in a unique maximal ideal// Proc. Amer. Math. Soc. 1971. V.30, Ή3. P. 459466. 8. Garkusha G.A. FP-injective and weakly quasi-frobenius rings// Zapiski nauch. sem. POMI. 1999. V.265. P. 110129. (in Russian) 9. Gatalevych A. On adequate and generalized adequate duo-rings and elementary divisor duo-rings// Mat. Stud. 1998. V.9. P. 115119. 10. Gillman L., Henriksen M. Rings of continuous functions in which every finitely generated ideal is principal// Trans. Amer. Math. Soc. 1956. V.82, Ή2. P. 366391. 11. Glaz S. Commutative Coherent Rings. Springer-Verlag, 1989. 347p. 12. Goodearl K.R. Von Neumann Regular Rings. London: Pitman, 1979. 369p. 13. Henriksen M. Some remarks on elementary divisor rings II// Michigan Math. J. 1955. V.3, Ή2. P. 159163. 14. Jondrup S. Rings in which pure ideals are generated by idempotents// Math. Scand. 1972. V.30 P. 177185. 15. Kaplansky I. Elementary divisors and modules// Trans. Amer. Math. Soc. 1949. V.66. P. 464491. 16. Khurana D., Marks G., Srivastava A.K. On unit-central rings// Springer: Advances in Ring Theory, Trends in Mathematics, Birkhauser Verlag Basel/Switzerland, 2010. - P. 205212. 17. Lam T.Y., Dugas A.S. Quasi-duo rings and stable range descent// J. Pure Appl. Alg. 2005. V.195. P. 243259. 18. McGovern W.W. Neat rings// J. Pure Appl. Algebra. V.205, Ή2. 2006. P. 243265. 19. Nicholson W.K. Lifting idempotents and exchange rings// Trans. Amer. Alath. Soc. 1977. V.229. P. 269278. 20. Nicholson W.K. Rings whose elements are quasi-regular or regular// Aequationes Mathematicae. 1973. V.9 P. 6470. 21. Nicholson W.K., Sanchez Campos E. Rings with the dual of the isomorphism theorem// J. Algebra. 2004. V.271. P. 391406. 22. Nicholson W.K., Yousif M.F., Quasi-Frobenius rings. Cambridge University Press, 2003. 23. Roitman J., An introduction to homological algebra. Academic Press, 1979. 24. Shores T. Modules over semihereditary Bezout rings// Proc. Amer. Math. Soc. V.46, Ή2. 1974. P. 211213. 25. Stenstrom B. Coherent rings and FP-injective modules// J. London Math. Soc. V.2. 1970. P. 323 329. 26. Tuganbaev A.A. Elementary divisor rings and distributive rings// Uspekhi. Mat. Nauk. 1991. V.46, Ή6. P. 219220. (in Russian) 27. Tuganbaev A.A., Rings theory. Arithmetical modules and rings. Miscow: MTsNMO, 2009. 472p. (in Russian) 28. Vamos P. 2-good rings// Quart. J. Math. 2005. V.56. P. 417430. 29. Vasiunyk I.S., Zabavsky B.V. Rings of almost unit stable range one// Ukr. Mat. Zh. 2011. V.63, Ή6. P. 840843. (in Ukrainian) 30. Vasserstein L.N. The stable rank of rings and dimensionality of topological spaces// Functional Anal. Appl. 1971. V.5. P. 102110. 31. Yu H.-P. On quasi-duo rings// Glasgow Math. J. 1995. V.37. P. 2131. 32. Zabavsky B.V. Diagonal reduction of matrices over rings. Mathematical Studies: Monograph Series. V.XVI. Lviv: VNTL Publishers, 2012. 251 p. 33. Zabavsky B.V. Fractionally regular Bezout rings// Mat. Stud. 2009. V.32, Ή1. P. 7680. 34. Zabavsky B.V. Diagonal reduction of matrices over finite stable range rings// Mat. Stud. 2014. V.41, Ή1. P. 101108. 35. Zabavsky B.V., Bilyavska S.I. Every zero adequate ring is an exchange ring// Fundam. Prikl. Mat. 2012. V.17, Ή3 P. 6166. (in Russian) 36. Zabavsky B.V., Bilavska S.I.Weak global dimension of finite homomorphic images of commutative Bezout domain// Prykl. Probl. Mat. and Mech. 2012. V.10. P. 7173. (in Ukrainian) 37. Zabavsky B.V., Komarnytskii N.Ya. Distributive domains with elementary divisors// Ukr. Mat. Zh. 1990. V.42, Ή7. P. 10001004. (in Russian) |
Pages |
89-103
|
Volume |
42
|
Issue |
1
|
Year |
2014
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |