Measure of the level set for solutions of ordinary differential equations with constant coefficients(in Ukrainian) |
|
Author |
ilkivv@i.ua
Lviv Polytechnic National University,
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
|
Abstract |
For a real functions
$f\in\mathcal{C}^n[a,b]$
such that
$|L_nf(x)|\ge\delta$
on
$[a,b]$,
where
$L_n$
is a differential expression, namely
$L_n=(d/dx+\lambda_1)\dotsb(d/dx+\lambda_n)$
with real
$\lambda_1,\dotsc,\lambda_n$,
we find a Lebesgue measure
estimate for the level set
$G_{L_n}(\varepsilon,\delta;f)=\{x\in[a,b]\colon|f(x)|\leq\varepsilon\}$.
In particular, we establish the inequality
$\mathop{\rm meas} G_{L_n}(\varepsilon,\delta;f)\le\min\{b-a,n\sqrt{2^{n+1}}\sqrt[n]{q_n\varepsilon/\delta}\},$
where
$q_n=\prod_{r=1}^n \frac{|\lambda_r|(b-a)/2}{\mathop{\rm th}|\lambda_r|(b-a)/2}$.
|
Keywords |
Lebesgue measure; level sets; small denominators
|
Reference |
1. Ilkiv V.S., Maherovska T.V. Exact estimate for the measure of the level set of the modulus of a function
with high-order constant-sign derivative// Mat. Stud. 2010. V.34, Ή1. P. 5764.
2. Ptashnyk B.Yo. Ill-posed boundary-value problems for partial differential equations. Naukova dumka, Kiev, 1984. (in Russian) 3. Ptashnyk B.Yo., Ilkiv V.S., Kmit I.Ya., Polishchuk V.M. Nonlocal boundary-value problems for partial differential equations. Naukova dumka, Kiev, 2002. (in Ukrainian) 4. Pyartli A.S. Diophantine approximation on submanifolds of euclidean space// Funkts. Anal. Priloz. 1969. V.3, Ή4. (in Russian) 5. Bernik V.I., Ptashnik B.I., Salyga B.O. An analog of a multipoint problem for a hyperbolic equation with constant coefficients// Differ. Equations. 1977. V.13, Ή4. P. 637645. 6. Ilkiv V.S. A generalization of a Pyartli lemma// In: Mater. 10th conf. mol. uchen. Inst. of appl. probl. mech. and math. AN USSR, part 2, Lviv, 1984. P. 9699. 7. Ilkiv V.S. Analogies of Piartlys lemma with absolute constant// Mat. methods and fys.-mekh. polya. 1999. V.42, Ή4. P. 6874. 8. Ilkiv V.S., Maherovska T.V. On the constant in the Pyartli lemma// J. Lviv politech. nation. univ. Phys. and math. sci. 2007. V.601. P. 1217. 9. Symotyuk M.M. On the estimates of the measures of sets where the modulus of a smooth function is the upper bound// Mat. methods and fys.-mekh. polya. 1999. V.42, Ή4. P. 9095. 10. Beresnevich V.V. A Groshev type theorem for convergence on manifolds// Acta Math. Hungar. 2002. V.94, Ή12, P. 99130. 11. Beresnevich V.V., Bernik V.I., Kleinbock D.Y., Margulis G.A. Metric Diophantine approximation: the Khintchine.Groshev theorem for nondegenerate manifolds// Moskow Math. Journ. - 2002. - V.2, Ή2. - P. 203-225. 12. Dani S.G., Margulis G.A. Limit distributions of orbits of unipotent flows and values of quadratic forms// Adv. in Soviet Math. - 1993. - V.16. - P. 91-137. 13. Kleinbock D., Margulis G.A. Flows on homogeneous spaces and diophantine approximation on manifold// Ann. Math. - 1998. - V.148. - P. 339-360. 14. Baker G.A.Jr., Graves-Morris P., Pade approximants. - Addison.Wesley, London, 1986. 15. Kondratiuk A.A. The Fourier series method for entire and meromorphic functions of completely regular growth. III// Math. sbornik. - 1983. - V.120(162). - P. 331-343. 16. Skaskiv O.B. Random gap series and Wimans inequality// Mat. Stud. - 2008. - V.30, Ή1. - P. 101-106. 17. Benvenuti P., Mesiar R., Vivona D. Monotone set functions-based integrals. . Handbook of measure theory, Elsevier, Amsterdam, 2002. 18. Cartan H. Sur les syst`emes de founctions holomorphes `a varietes lineaires et leurs applications// Ann. Sci. Ecole Norm. Sup. - 1928. - V.45, Ή3. 19. Levin B.Ya. Distribution of zeros of entire functions. - GITTL, 1956. (in Russian) 20. Levin B.Ya. Lectures on entire functions. - Amer. Math. Society, 1966, V.150. 21. Ilkiv V.S., Maherovska T.V. On inequalities between norms of derivatives of functions and area measure// Int. Conf. Functional methods in approximation theory and operator theory III, dedicated to the memory of V.K. Dzyadyk, 2009, Volyn, Ukraine. - P. 48-49. 22. Bernik V.I., Melnichuk Yu.V. Diophantine approximations and Hausdorff dimension. - Nauka i technika, Minsk, 1988. (in Russian) |
Pages |
146-156
|
Volume |
41
|
Issue |
2
|
Year |
2014
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |