Some properties of the Riemann zeta-function and cyclicity in weighted Hardy spaces(in Ukrainian)

V. Dilnyi
Ivan Franko National University of Lviv
We consider some reformulation of the Riemann Hypothesis in terms of cyclic functions in a weighted Hardy space with an exponential weight. We indicate a distinctive feature of the weighted case from the classical one. Also we consider connection of the Riemann Hypothesis with a convolution type equation in the semistrip.
outer function; cyclic function; Riemann zeta-function; weighted Hardy space
1. A.N. Parshin, Zeta function, in: Matem. encyklopedia, v.2 D. – Koo. – Moscow: Soviet. encyklopedia, 1979. – P.111–122.

2. B. Nyman, On some groups and semigroups of translations, Thesis, Uppsala, 1950.

3. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta math., 81 (1949), 239–255.

4. P. Lax, Translation invariant subspaces, Acta math., 101 (1959), 163–178.

5. N.K. Nikolski, Operatos, functions and systems: an easy reading, V.1, AMS, 2002.

6. V.I. Vasyunin, On a biorthogonal system associated with the Riemann hypothesis, St. Petersburg Math. Journ., 7 (1996), ¹3, 405-–419.

7. J.-F. Burnol, An adelic causality problem related to abelian L–functions, J. Number Theory, 87 (2001), 432–428.

8. H.S. Shapiro, Weakly invertible elements in certain function spaces and generators in l1, Mich Math J., 11 (1964), 161–165.

9. P. Lax, Functional analysis, Wiley Interscience, 2002.

10. A. Shields, Weighted shift operators and analytic function theory, in Topics in Operator Theory, Math Surveys, AMS, Providence, 13 (1974), 49–128.

11. B. Vinnitskii, On zeros of functions analytic in a half plane and completeness of systems of exponents, Ukr. Math. Jour. 46 (1994), ¹5, 484–500.

12. R.E.A.C. Paley, N. Wiener, Fourier transforms in complex domain (AMS Colloq. Publ. XIX), Providence: AMS, 1934.

13. V. Dil’nyi, On the equivalence of some conditions for weighted Hardy spaces, Ukr. Math. Jour., 58 (2006), ¹9, 1425–1432.

14. V. Dilnyi, On cyclic functions in weighted hardy spaces, Journ. of Math. Phys., Anal., Geom., 7 (2011), ¹1, 19–33.

15. B. Vinnitskii, V. Dil’nyi, A generalization of the Beurling-Lax theorem, Math. Notes, 79 (2006), ¹3–4, 335–341.

16. H. Dwight, Tables of integrals and other mathematical data, 4-th ed., The Macmillan Company, New York, 1961.

17. M.A. Fedorov, A.F. Grishin, Some questions of the Nevanlinna theory for the complex half-plane, Math. Physics, Anal. and Geom., 1 (1998), 223–271.

18. P. Koosis, Introduction to Hp spaces, Second edition. Cambridge Tracts in Mathematics, 115, Cambridge University Press, Cambridge, 1998.

19. A. M. Sedleckii, An equivalent definition of Hp spaces in the half-plane and some applications, Math. USSR Sb., 25 (1975), ¹1, 69–76.

20. B. Vinnitsky, On solutions of homogeneous convolution equation in one class of functions analytic in a semistrip, Mat. Stud., 7 (1997), ¹1, 41–52. (in Ukrainian)

21. B.V. Vynnytskyi, V.M. Dil’nyi, On necessary conditions for existence of solutions of convolution type equation, Mat. Stud., 16 (2001), ¹1, 61–70. (in Ukrainian)

22. A.A. Karatsuba, S.M. Voronin, The Riemann zeta-function, Valter de Gruyter, 1992.

23. B.V. Vynnyts’kyi, V.M. Dil’nyi, On solutions of homogeneous convolution equation generated by singularity, Mat. Stud., 19 (2003), ¹2, 149–155.
Matematychni Studii
Full text of paper
Table of content of issue