Boundedness of l-index in direction of functions of the form $f(\langle z,m\rangle)$ and existence theorems |
|
Author |
andriykopanytsia@gmail.com, skask@km.ru
Ivano-Frankivsk National Technical University of Oil and Gas, Ivan Franko National University of Lviv
|
Abstract |
We obtain a criterion of boundedness of $L$-index in direction for functions $f(\langle z,m\rangle)$. Using this
criterion we find sufficient conditions of boundedness L-index in direction for some class of entire functions
with ''plane'' zeros. Moreover, we prove some existence theorems of an entire function $f(\langle z,m\rangle)$ of
bounded $L$-index in direction for a given $L$ and of a positive continuous function $L$ for a given entire function
$F(z)$ such that $F$ is of bounded $L$-index in direction.
|
Keywords |
entire function of several variables; bounded L-index in direction; existence theorem; entire function
with plane zeros
|
Reference |
1. Bandura A.I., Skaskiv O.B. Entire function of bounded L-index in direction// Mat. Stud. 2007. V.27,
Ή1. P. 3052. (in Ukrainian)
2. Bandura A.I., Skaskiv O.B. Entire function of bounded and unbounded L-index in direction// Mat. Stud. 2007. V.27, Ή2. P. 211215. (in Ukrainian) 3. Bandura A.I., Skaskiv O.B. Sufficient sets for boundedness L-index in direction for entire function// Mat. Stud. 2008. V.30, Ή2. P. 177182. 4. Bandura A.I. On boundedness of the L-index in direction for entire functions with plane zeros // Math. Bull. Shevchenko Sci. Soc. 2008. V.6. P. 4449. (in Ukrainian) 5. Papush D.E. On the growth of entire functions with planar zeros// Theory of functions, functional analysis and its application. 1987. V.48. P. 117125. (in Russian) English translated in Journal of Soviet Math. 1990. V.49, Ή2. P. 930935. 6. Bandura A.I. A modified criterion of boundedness of L-index in direction// Mat. Stud. 2013. V.39, Ή1. P. 99102. 7. Sheremeta M.M. On entire function and Dirichlet series of bounded l-index// Russ. Math. V.36, Ή9. 1992. P. 7682. 8. Sheremeta M.M. Analytic functions of bounded index. Lviv: VNTL Publishers, 1999. 141 p. 9. Goldberg A.A., Sheremeta M.M. On the boundedness of l-index canonical products// Ukr. Math. Bull. 2005. V.2, Ή1. P. 5254. (in Ukrainian) 10. Chyzhykov I.E., Sheremeta M.M. Boundedness of l-index for entire functions of zero genus// Mat. Stud. 2001. V.16, Ή2. P. 124130. 11. Sheremeta M.M. Generalization of the Fricke theorem on entire functions of bounded index// Ukr. Math. Journ. 1996. V.48, Ή3. P. 460466. 12. Bordulyak M.T., Sheremeta M.N. On the existence of entire functions of bounded l-index and l-regular growth// Ukr. Math. Journ. 1996. V.48, Ή9. P. 13221340. 13. Goldberg A.A., Sheremeta M.M. Existence of an entire transcendental function of bounded l-index// Math. Notes. 1995. V.57, Ή12. P. 8890. 14. Bordulyak M.T. A proof of Sheremeta conjecture concerning entire function of bounded l-index// Mat. Stud. 1999. V.11, Ή2. P. 108110. 15. Sheremeta M.M. Remark to existence theorem for entire function of bounded l-index// Mat. Stud. 2000. V.13, Ή1. P. 9799. 16. Bordulyak M.T., Sheremeta M.M. Boundedness of the L-index of an entire function of several variables// Dopov. Akad. Nauk Ukr. 1993. Ή9. P. 1013. (in Ukrainian) |
Pages |
45-52
|
Volume |
41
|
Issue |
1
|
Year |
2014
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |