Pretangent spaces with nonpositive and nonnegative Aleksandrov curvature (in Russian) |
|
Author |
biletvictoriya@mail.ru, aleksdov@mail.ru
Donetsk Institute of Applied Mathematics and Mechanics
|
Abstract |
We find conditions under which the pretangent spaces to general metric spaces have the nonpositive Aleksandrov curvature or nonnegative one. The infinitesimal structure of general metric spaces with Busemann convex pretangent spaces is also described.
|
Keywords |
pretangent space; CAT(0)-space; Aleksandrov curvature; Busemann convexity; infinitesimal geometry of metric spaces
|
Reference |
1. F. Abdullayev, O. Dovgoshey, M. Kucukaslan, Compactness and boundedness of tangent spaces to metric
spaces, Beitr. Algebra Geom., 51 (2010), ¹2, 547–576.
2. I. Berg, I. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata, 133 (2008), 195–218. 3. V. Bilet, Geodesic tangent spaces to metric spaces, Ukr. Mat. J., 64 (2012), ¹9, 1273–1281. (in Russian) 4. V. Bilet, O. Dovgoshey, Isometric embeddings of pretangent spaces in En, Bull. Belg. Math. Soc. Simon Stevin., 20 (2013), 91–110. 5. V. Bilet, O. Dovgoshey, Metric betweenness, Ptolemaic spaces and isometric embeddings of pretangent spaces in R, J. Math. Sci., New York, 182 (2012), ¹4, 22–36. 6. D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, American Mathematical Society, Providence, RI, 2001. 7. D. Dordovskyi, Metric tangent spaces to Euclidean spaces, J. Math. Sci., New York, 179 (2011), ¹2, 229–244. 8. O. Dovgoshey, O. Martio, Tangent spaces to metric spaces, Reports in Math., Helsinki Univ., 480 (2008), 20 p. 9. O. Dovgoshey, O. Martio, Tangent spaces to general metric spaces, Rev. Roumaine Math. Pures. Appl., 56 (2011), ¹2, 137–155. 10. T. Foertsch, A. Lytchak, V. Schroeder, Nonpositive curvature and the Ptolemy inequality, Int. Math. Res. Not., (2007), ¹22, 15 p. 11. N. Lebedeva, A. Petrunin, Curvature bounded below: a definition a la Berg-Nikolaev, Electronic research announcements in math. sci., 17 (2010), 122–124. 12. A. Papadopoulos, Metric spaces, convexity and nonpositive curvature, European Mathematical Society, (2005). 13. T. Sato, An alternative proof of Berg and Nikilaev’s characterization of CAT(0)-spaces via quadrialateral inequality, Arch. Math., 93 (2009), 487–490. |
Pages |
198-208
|
Volume |
40
|
Issue |
2
|
Year |
2013
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |