Multiplicatively periodic subharmonic functions in the punctured Euclidean space

Author
A. A. Kondratyuk, V. S. Zaborovska
Lviv National University
Abstract
It is proved that each multiplicatively periodic subharmonic function in $\mathbb{R}^m\backslash\{0 \}$, $m\geq3$, is constant. Examples of non-constant multiplicatively periodic differences of subharmonic in $\mathbb{R}^m\backslash\{0 \}$ functions are constructed.
Keywords
subharmonic function; multiplicatively periodic function; Riesz measure; distribution function of a measure
Reference
1. O. Rausenberger, Lehrbuch der Theorie der periodischen Funktionen einer Variabeln, Leipzig, Druck und Ferlag von B.G.Teubner, 1884, 470 p.

2. Y. Hellegouarch, Invitation to the Mathematics of Fermat-Wiles, Academic Press, 2002, 381 p.

3. G. Valiron, Cours d’Analyse Mathematique, Theorie des fonctions, 2nd Edition, Masson et.Cie., Paris, 1947, 522 p.

4. O.P. Gnatiuk, A.A. Kondratyuk, Subharmonic functions and electric fields in ball layers. I, Mat. Stud., 34 (2010), ¹2, 180–192.

5. O. Gnatiuk, A. Kondratyuk, Yu. Kudjavina, Classification of isolated singularities of subharmonic functions, Visnyk Lviv. Univ., Ser. Mech. Math., 74 (2011), 52–60.

6. W.K. Hayman, P.B. Kennedy, Subharmonic functions, V.1, Academic Press, London, New York, San Francisco, 1976.

7. F. Schottky, Uber eine specielle Funktion welche bei einer bestimmten linearen Transformation ihres Arguments unverandert bleibt, J. Reine Angew. Math., 101 (1887), 227–272.

8. F. Klein, Zur Theorie der Abel’schen Funktionen, Math. Ann., 36 (1890), 1–83.

9. D.G. Crowdy, Geometric function theory: a modern view of a classical subject, IOP Publishing Ltd and London Mathematical Society, Nonlinearity, 21 (2008), 205–219.
Pages
159-164
Volume
40
Issue
2
Year
2013
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue