Asymptotics of the spectrum of inhomogeneous plate with light-weight stiff inclusions(in Ukrainian)

Author Yu. D. Golovaty, V. M. Hut,
Lviv Ivan Franko National University

Abstract The Dirichlet spectral problem for an elliptic operator of the fourth order with singularly perturbed coefficients is considered. The problem describes the eigenmodes of a plate with finite number of the stiff and light-weight inclusions of an arbitrary shape. The asymptotic behavior of eigenvalues and eigenfunctions is studied. The number-by-number convergence of the eigenvalues and the corresponding eigenspaces is established. The limit eigenvalue problem involves a non-local boundary conditions. Justification of the asymptotic formulas is based on the norm resolvent convergence of a family of unbounded self-adjoint operators.
Keywords spectral Dirichlet problem; biharmonic operator; eigenvalue; eigenfunction; singular perturbation; asymptotics of spectrum; stiff light inclusions
1. Marchenko V.A., Khruslov E.Ya. Homogenized Models of Microinhomogeneous Media. – Kiev, Naukova Dumka, 2005 (in Russian). English translated in Homogenization of partial differential equations, Progress in Mathematical Physics, V.46, Birkhauser, Boston, 2006.

2. Sanchez Hubert J., Sanchez Palencia E. Vibration and coupling of continuous systems. – Springer-Verlag, 1989. – 421 p.

3. Oleinik O.A., Shamaev A.S., Yosifian G.A. Mathematical Problems in Elasticity and Homogenization. – North-Holland, London, 1992.

4. Zhikov V.V., Kozlov S.M., Oleinik O.A. Homogenization of differential operators and integral functionals, Springer Verlag, Berlin, Heidelberg, NewYork, 1994.

5. Geymonat G., Lobo-Hidalgo M., Sanchez-Palencia E., Roach G.F. Spectral properties of certain stiff problems in elasticity and acoustics// Mathematical Methods in the Applied Sciences. – 1982. – V.4. – P. 291–306.

6. Lobo M., Nazarov S.A., Perez E. Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues// IMA J. Appl. Math. – 2005. – P. 1–40.

7. Gomez D., Lobo M., Nazarov S.A., Perez E. Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems// J. Math. Pures Appl. – 2006. – V.86. – P. 369–402.

8. Golovaty Yu.D. Spectral properties of oscillatory systems with added masses// Trudy Moskov. Mat. Obshch. – 1992. – V.54. – P. 29–72 (in Russian). English transl. in Trans. Moscow Math. Soc. – 1993. – P. 23–59.

9. Chechkin G.A. Asymptotic expansions of the eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses near the boundary. The two-dimensional case// Izv. Ross. Akad. Nauk Ser. Mat. – 2005. – V.69, Ή4. – P. 161-204 (in Russian). English transl. in Izv. Math.– 2005. – V.69, Ή4. – P. 805-846.

10. Rybalko V. Vibrations of elastic systems with a large number of tiny heavy inclusions// Asymptotic Analysis. – 2002. – V.32. – P. 27–62.

11. Chechkin G.A., Mel’nyk T.A. Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses// Appl. Anal. – 2011. – P. 1–41.

12. Golovaty Yu.D., Nazarov S.A., Oleinik O.A. Asymptotic behavior of eigenvalues and eigen-functions in problems on oscillations of a medium with singular perturbation of the density// Uspekhi Mat. Nauk. – 1988. – V.43, Ή5. – P. 189–190 (in Russian). English transl. in Russian Math. Surveys – 1988. – V.43, Ή5. – P. 229–230.

13. Lobo M., Perez E. Local problems for vibrating systems with concentrated masses: a review// C. R. Mecanique. – 2003. – V.331. – P. 303–317.

14. Golovaty Yu.D., Gomez D., Lobo M., Perez E. On vibrating membranes with very heavy thin inclusions// Math. Models Methods. Appl. Sci. – 2004. – V.14, Ή7. – P. 987–1034.

15. Melnyk T.A., Nazarov S.A. Asymptotic analysis of the Neumann problem in a junction of body and heavy spokes// Algebra i Analiz. – 2000. – V.12, Ή2. – P. 188–238 (in Russian). English transl. in St. Petersburg Math. J. – 2001. – V.12, Ή2. – P. 317–351.

16. Melnyk T.A., Nazarov S.A. The asymptotic structure of the spectrum in the problem of harmonic oscillations of a hub with heavy spokes// Dokl. Akad. Nauk of Russia. – 1993. – V.333, Ή1. – P. 13–15. (in Russian). English transl. in Acad. Sci. Dokl. Math. – 1994. – V.48, Ή3. – P. 428–432.

17. Sandrakov G.V. Averaging of the system of equations of the theory of elasticity with contrasting coefficients// Mat. Sb. –1999. – 190, Ή12. – P. 37–92 (in Russian). English transl. in Sbornik: Mathematics. –1999. – 190, Ή12. – P. 1749–1806.

18. Babych N., Golovaty Yu.D. Low and high frequency approximations to eigenvibrations in a medium with double contrasts// J. Comput. Appl. Math. – 2010. – V.234. – P. 1860–1867.

19. Golovaty Yu.D., Hut V.M. Vibrating systems with stiff light-weight inclusions: asymptotics of spectrum and eigenspaces// Ukrains’kyi Matematychnyi Zhurnal. – 2012. – V.64, Ή10. – P. 1315–1330 (in Ukrainian). English transl. in Ukr. Math. J. – 2013. – V.64, Ή10. – P. 1495–1513.

20. Hut V.M. Vibrating systems with heavy soft inclusions// Mat. Stud. – 2012. – V.38, Ή2. – P. 162–176. (in Ukrainian)

21. Golovaty Yu.D. On eigenoscillations and eigenfrequencies of a clamped plate with an attached mass// Uspekhi Mat. Nauk – 1988. – V.43, Ή5. – P. 185–186 (in Russian). English transl. in Russian Math. Surveys – 1988. – V.43, Ή5. – P. 227–228.

22. Golovaty Yu.D., Lavrenyuk A.S. Asymptotic expansions of local eigenvibrations for plate with density perturbed in neighbourhood of one-dimensional manifold// Mat. Stud. – 2000. – V.13, Ή1. – P. 51–62.

23. Golovaty Yu.D., Lavrenyuk A.S. On the asymptotic of eigenvalues for plate with a local perturbation of stiffness coefficient// Visn. L’viv Univ. Ser. Mekh.-Mat. – 2000. – V.58. – P. 118–128. (in Ukrainian)

24. Lavrenyuk A.S. A singularly perturbed spectral problem for a biharmonic operator with Neumann conditions// Ukrains’kyi Matematychnyi Zhurnal. – 1999. – V.51, Ή11. – P. 1467–1475 (in Ukrainian). English transl. in Ukr. Math. J. – 1999. – V.51, Ή11. – P. 1656–1667.

25. Shaposhnikova T.A. Homogenization of the boundary-value problem for the biharmonic equation in a domain containing thin canals of small length// Mat. Sb. – 2001. – 192, Ή10. – P. 131–160 (in Russian). English transl. in Sbornik: Mathematics. – 2001. – 192, Ή10. – P. 1553–1585.

26. Kozlov V.A., Nazarov S.A. The spectrum asymptotics for the Dirichlet problem in the case o f the biharmonic operator in a domain with highly indented boundary// Algebra i Analiz. – 2010. – V.22, Ή6. – P. 127–184 (in Russian). English transl. in St. Petersburg Math. J. – 2011. – V.22, Ή6. – P. 941–983.

27. Andrianov I.V., Danishevs’kyy V.V., Ivankov A.O. Asymptotic Methods in the Theory of Beams and Plates Oscillations, Dnipropetrovs’k: PGASA, 2010. – 216 p. (in Russian)

28. Rektorys K. Variational Methods in Mathematics, Science, and Engineering.: Transl. from English. – M. Mir, 1985. – 590 p.

29. Vishik M.I., Lyusternik L.A. Regular degeneration and boundary layer for linear differential equations with small parameter// Uspehi Mat. Nauk. – 1957. – V.12, Ή5. – P. 3–122 (in Russian). English transl. in Amer. Math. Soc. Transl. – 1962. – V.20, Ή2. – P. 239–364.

30. Hsiao G.C., Wendland W.L. Boundary integral equations. Appl. Math. Sci. – Berlin: Springer, 2008, V.164. – 618 p.

31. Reed M., Simon B. Methods of Modern Mathematical Physics, V.1: Functional Analysis. – M. Mir, 1977. (in Russian)

32. Reed M., Simon B. Methods of Modern Mathematical Physics, V.4: Analysis of Operators. – M. Mir, 1982. (in Russian)

33. Lazutkin V.F. Semiclassical asymptotics of eigenfunctions// Ser. Sovrem. Probl. Mat., Fundam. Napravleniya. (Itogi Nauki Tekh.) – M., 1988. – V.34. – P. 135–174 (in Russian). English transl. in Encyclopedia of Math. Sci. – V.34, Partial Differential Equations V, M.V. Fedoryuk (Editor), Springer, New York, 1999, 133 p.
Pages 79-94
Volume 40
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML