Daugavet centers are separably determined | |
Author | |
Abstract | |
Keywords | |
Reference |
1. A. Aviles, V. Kadets, M. Martin, J. Meri, V. Shepelska, Slicely countably determined Banach spaces, C. R., Math., Acad. Sci. Paris, 347 (2009), 1277–1280. 2. T. Bosenko, Strong Daugavet operators and narrow operators with respect to Daugavet centers, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 931 (2010), ¹62, 5–19. 3. T. Bosenko, V. Kadets, Daugavet centers, Zh. Mat. Fiz. Anal. Geom., 6 (2010), ¹1, 3–20. 4. I. Daugavet, On a property of completely continuous operators in the space C, Uspekhi Mat. Nauk, 18 (1963), ¹5, 157–158. (in Russian) 5. V. Kadets, R. Shvidkoy, G. Sirotkin, D. Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc., 352 (2000), ¹2, 855–873. 6. V. Kadets, R. Shvidkoy, D. Werner, Narrow operators and rich subspaces of Banach spaces with the Daugavet property, Stud. Math., 147 (2001), ¹3, 269–298. 7. G. Lozanovskii, On almost integral operators in KB-spaces, Vestnik Leningrad Univ. Mat. Mekh. Astr., 21 (1966), 35–44. (in Russian) 8. D. Werner, The Daugavet equation for operators on function spaces, J. Funct. Anal., 143 (1997), 117–128. 9. P.Wojtaszczyk, Some remarks on the Daugavet equation, Proc. Amer. Math. Soc., 115 (1992), 1047–1052. |
Pages | |
Volume | 40 |
Issue | 1 |
Year | 2013 | Journal | Matematychni Studii |
Full text of paper | |
Table of content of issue | HTML |