Asymptotics of eigenvalues and eigenfunctions of energy-dependent Sturm-Liouville equations

Author N. I. Pronska
Institute for Applied Problems of Mechanics and Mathematics, Lviv

Abstract We study asymptotics of eigenvalues, eigenfunctions and norming constants of singular energy-dependent Sturm-Liouville equations with complex-valued potentials. The analysis essentially exploits the integral representation of solutions, which we derive using the connection between the problem under study and a Dirac system of a special form.
Keywords energy-dependent potentials; Sturm-Liouville equations
1. S. Albeverio, R. Hryniv, Ya. Mykytyuk, Inverse spectral problems for Dirac operators with summable potentials, Russ. J. Math. Phys., 12 (2005), ¹4, 406–423.

2. A.F. Filippov, Differential equations with discontinuous righthand sides, Kluwer Academic Publishers, 1988, Translated from the Russian edition (Nauka Publ., Moscow, 1985).

3. M.G. Gasymov, G.S. Guseinov, Determination of a diffusion operator from spectral data, Akad. Nauk Azerba.idzhan, SSR Dokl., 37 (1981), ¹2, 19–23.

4. P. Hartman, Ordinary differential equations. John Wiley & Sons Inc., New York, 1964.

5. R. Hryniv, N. Pronska, Inverse spectral problems for energy-dependent Sturm–Liouville equations, Inverse Problems, 28 (2012), ¹8, 085008, 21p.

6. T. Kappeler, P. Perry, M. Shubin, P. Topalov, The Miura map on the line, Int. Math. Res. Not., 50 (2005), 3091–3133.

7. T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag, Inc., New York, 1966.

8. M.V. Keldys, The completeness of eigenfunctions of certain classes of nonselfadjoint linear operators Uspehi Mat. Nauk, 26 (1971), ¹4(160), 15–41.

9. A.G. Kostyuchenko, I.S. Sargsyan, Distribution of eigenvalues. Selfadjoint ordinary differential operators, Nauka, 1979.

10. B.Y. Levin, I. Ostrovskii, Small perturbations of the set of roots of sine-type functions, Izv. Akad. Nauk. SSSR. Ser. Mat., 43 (1979), ¹1, 87–110. (in Russian)

11. B.M. Levitan, I.S. Sargsjan, Sturm–Liouville and Dirac operators, V.59 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian edition (Nauka Publ., Moscow, 1988).

12. V.A. Marchenko, Sturm–Liouville operators and their applications, Naukova Dumka Publ., 1977.

13. A.S. Markus, Introduction to the spectral theory of polynomial operator pencils, V.71 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1988. Translated from the Russian edition (“Shtiintsa”, Kishinev, 1986).

14. I.M. Nabiev, Asymptotics and mutual location of eigenvalues of diffusion operators, Dokl. Nats. Akad. Nauk Azerb., 60, ¹3,4, 3–9.

15. J. Poschel, E. Trubowitz, Inverse spectral theory, V.130 of Pure and Applied Mathematics, Academic Press Inc., Boston, MA, 1987.

16. N. Pronska, Spectral properties of Sturm–Liouville equations with singular energy-dependent potentials, Methods Funct. Anal. Topol., 19 (2013), ¹4 (to appear).

17. N. Pronska, Reconstruction of energy-dependent Sturm–Liouville operators from two spectra, Integral Equations and Operator Theory, 76 (2013), ¹3, 403–419.

18. A.M. Savchuk, A.A. Shkalikov, Sturm–Liouville operators with singular potentials, Mat. Zametki, 66 (1999), ¹6, 897–912.

19. A.M. Savchuk, A.A. Shkalikov, Sturm–Liouville operators with distribution potentials, Tr. Mosk. Mat. Obs., 64 (2003), 159–212.

20. R.M. Young, An Introduction to nonharmonic Fourier series, Academic Press, revised first edition, 2001.
Pages 38-52
Volume 40
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML