Unique quivers(in Ukrainian)

Author V. V. Kirichenko, A. V. Zelensky
vkir@univ.kiev.ua, zelik82@mail.ru
. . , '- . . 㳺

Abstract We consider unique admissible quivers, i. e. quivers of Gorenstein exponent matrices. It is proved that admissible quiver with a loop at each vertex is unique if and only if it is a simple cycle, and that there are different from the simple cycles unique quivers with any number of vertices.
Keywords exponent matrix; admissible quiver; Gorenstein's matrix
Reference
1. Zhuravlev V.N. Acceptable quivers// Fundamental and Applied Mathematics. 2008. V.14, 7. P. 121128. (in Russian)

2. Zhuravlev V.N., Zelensky A.V., Darmosiuk V.M. Unit quivers of exponent matrices// Bulletin of Taras Shevchenko National University of Kyiv Series: Physics & Mathematics. 2012. V.4. P. 2731. (in Ukrainian)

3. Roggenkamp K.W., Kirichenko V.V., Khibina M.A., Zhuravlev V.N. Gorenstein tiled orders// Communication in Algebra. 2001. V.29, 9. P. 42314247.

4. Hazewinkel M., Gubareni N., Kirichenko V.V. Algebras Rings and Modules. Kluwer Academic Publishers, Dortrecht-Boston-London, 2004. 380p.

5. Hazewinkel M., Gubareni N., Kirichenko V.V. Algebras Rings and Modules. Mathematical and Its Applications, Springer, 2007, V.2, 400 p.

6. Kirichenko V.V., Zelenskiy O.V., Zhuravlev V.N. Exponent matrices and tiled order over discrete valuation rings// International Journal of Algebra and Computation. 2005. V.15, 5,6. P. 116.
Pages 3-10
Volume 40
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML