On a theorem of John and its generalizations | |
| Author | |
| Abstract | |
| Keywords | |
| DOI |
doi:10.30970/ms.40.1.16-22
|
| Reference |
1. John F. Abhangigkeiten zwischen den Flachenintegralen einer stetigen Funktion// Math. Ann. – 1935. – V.111, №1. – P. 541–559. 2. John F. Plane waves and spherical means, applied to partial differential equations. – Moscow: IL, 2011. – 156 p. 3. Volchkov V.V. Integral geometry and convolution equations. – Dordrecht: Kluwer Academic Publishers, 2003. – 454 p. 4. Volchkov V.V. A definitive version of the local two-radii theorem// Mat. Sb. – 1995. – 186, №6. – P. 15–34. English transl. Sbornik: Math. – 1995. – 186. – P. 783–802. 5. Volchkov V.V., Volchkov Vit.V. Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group. – London: Springer, 2009. – 671 p. 6. Volchkov V.V. Mean value theorems for a class of polynomials// Sibirsk. Mat. Zh. – 1994. – V.35, №4. – P. 737–745. English transl.: Siberian Math. J. – 1994. – V.35. – P. 656-663. 7. Bateman H., Erdelyi A. Higher transcendental functions. – Moscow: Nauka, 1973. – V.1. – 296 p. 8. Vilenkin N.Y. Special functions and the theory of group representations. 1-st ed. – Moscow: Nauka, 1991. – 576 p. |
| Pages | |
| Volume | 40 |
| Issue | 1 |
| Year | 2013 | Journal | Matematychni Studii |
| Full text of paper | |
| Table of content of issue | HTML |