Reference |
1. F.G. Arenas, V.A. Chatyrko, M.L. Puertas, Transfinite extension of Steinke’s dimension, Acta Math.
Hungar., 88 (2000), ¹1-2, 105–112.
2. T. Banakh, R. Cauty, On universality of countable and weak products of sigma hereditarily disconnected
spaces, Fund. Math., 167 (2001), 97–109.
3. V.A. Chatyrko, Ordinal products of topological spaces, Fund. Math., 144 (1994), 85–117.
4. V.A. Chatyrko, On properties of subsets of $[0, \omega_c] \times I$, Q & A in General Topology, 26 (2008), 97–104.
5. R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
6. R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.
7. J. Krasinkewicz, Essential mappings onto products of manifolds, in: Geometric and Algebraic Topology,
Banach Center Publ. 18, PWN, 1986, 377–406.
8. J. van Mill, The Infinite-Dimensional Topology of Function Spaces, Elsevier, Amsterdam, 2001.
9. R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. AMS, 82
(1981), 634–636.
10. T.M. Radul, On classification of sigma hereditary disconnected spaces, Mat. Stud. 26 (2006), ¹1, 97-100.
11. M. Renska, On Cantor manifolds for the large transfinite dimension, Topology Appl., 112 (2001), 1–11.
12. M. Renska, On Cantor manifolds for the small transfinite dimension, Commentationes Mathematicae,
XLVI (2006), ¹2, 163–168.
13. G. Steinke, A new dimension by means of separating sets, Arch. Math., 40 (1983), 273–282.
|