|
Description of Pompeiu sets in terms of approximations of their indicator
functions |
Author |
O. A. Ochakovskaya
ochakovskaja@yandex.ua
Institute of Applied Mathematics and Mechanics
NAS of Ukraine, Donetsk
|
Abstract |
Let $H$ be an open upper half-space in $\mathbb R^n$, $n\geq2$, and assume that $A$ is
a non-empty, open, bounded subset of $\mathbb R^n$ such that $\overline{A}\subset H$ and
the exterior of $A$ is connected. Let $p\in[2, +\infty).$ It is proved that there is a
nonzero function with zero integrals over all sets in $\mathbb R^n$ congruent to $A$ if
and only if the indicator function of $A$ is the limit in $L^p(H)$ of a sequence of
linear combinations of indicator functions of balls in $H$ with radii proportional to
positive zeros of the Bessel function $J_{n/2}$. The proportionality coefficient here
is the same for all balls and depends only on $A$. |
Keywords |
Pompeiu property; mean periodicity |
Reference |
1. Zalcman L. A bibliographic survey of the Pompeiu problem; in: B. Fuglede et al. (eds.)// Approximation
by Solutions of Partial Differential Equations. Dordrecht: Kluwer Academic Publishers, 1992. P. 185
194.
2. Zalcman L. Supplementary bibliography to A bibliographic survey of the Pompeiu problem; in Radon
Transforms and Tomography// Contemp. Math. 2001. V.278. P. 6974.
3. Volchkov V.V. Integral Geometry and Convolution Equations. Dordrecht: Kluwer Academic Publishers,
2003. 454 p.
4. Volchkov V.V., Volchkov Vit.V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces
and the Heisenberg Group. London: Springer, 2009. 671 p.
5. Volchkov V.V. New theorems on the mean for solutions of the Helmholtz equation// Russian Acad. Sci.
Sb. Math. 1994. V.79. P. 281286.
6. Volchkov V.V. Theorems on ball means values in symmetric spaces// Sbornik: Math. 2001. V.192.
P. 12751296.
7. Ochakovskaya O.A. Precise characterizations of admissible rate of decrease of a non-trivial function with
zero ball means// Sbornik: Math. 2008. V.199. P. 4565.
8. Korenev B.G. Introduction to the theory of Bessel functions. Moscow: Nauka, 1971. 288 p.
9. Levin B. Ya. Distribution of zeros of entire functions. Providence, RI: Amer. Math. Soc., 1964. 632 p.
10. Stein E., Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. New Jersey: Princeton
University Press, 1971. 332 p.
|
Pages |
142-149 |
Volume |
39 |
Issue |
2 |
Year |
2013 |
Journal |
Matematychni Studii |
Full text of paper |
PDF |
Table of content of issue |
HTML |