|
|
Estimates from below for characteristic functions of probability
laws |
| Author |
M. I. Parolya, M. M. Sheremeta
marta0691@rambler.ru, m_m_sheremeta@list.ru
Ivan Franko Natonal University of Lviv
|
| Abstract |
Let $\varphi$ be the characteristic function of a probability law F that is analytic in $\mathbb{D}_{R}=\{z: |z|<R \},$ $0<R\leq+\infty,$ $M(r,\varphi)=\max\left\{|\varphi(z)|\colon |z|=r<R\right\}$ and $W_{F}(x)=1-F(x)+F(-x),$ $x\geq 0.$ A connection between the growth of $M(r,\varphi)$ and the decrease of $W_{F}(x)$ is investigated in terms of estimates from below. For entire characteristic functions is proved, for example, that if $\ln x_k\geq \lambda\ln(\frac{1}{x_k}\ln\frac{1}{W_{F}(x_k)})$ for some increasing sequence $(x_k)$ such that $x_{k+1}=O(x_k), k\rightarrow\infty,$ then $\ln\frac{\ln M(r,\varphi)}{r}\geq (1+o(1))\lambda\ln r$ as $r\rightarrow+\infty.$ |
| Keywords |
characteristic function; probability law; lower estimate |
| DOI |
doi:10.30970/ms.39.1.54-66
|
| Reference |
1. Linnik Yu.V., Ostrovskii I.V. Decomposition of random variables and vectors. – Ioscow: Nauka, 1972. –
479 p. (in Russian)
2. Skaskiv O.B., Sorokivs’kyj V.M. On the maximum of module of characteristic functions of probabilistic
law// Kraj. Zadachi Dyfer. Rivnyan’. – 2001. – V.7. – P. 286–289. (in Ukrainian)
3. Jakovleva N.I. On the growth of entire characteristic functions of probability laws// Problems of
mathematical physics and funct. analysis. – E.: Naukova dumka, 1976. – P. 43–54. (in Russian)
4. Sheremeta M.M., Sumyk I.I. A connection between the growth of Young conjugated functons// Mat.
Stud. – 1999. – V.11, №1. – P. 41–47. (in Ukrainian)
5. Sheremeta M.M., Sumyk I.I. Lower estimates for the maximal term of a Dirichlet series// Izv. Vyssh.
Uchebn. Zaved., Mat. – 2001. – №4. – 53–57. (in Russian)
6. Sumyk I.I. Lower estimates for maximal term of Dirichlet series// Visn. L’viv. Univ., ser. mekh.-math.
– 1999. – V.53. – P. 40–44. (in Ukrainian)
7. Sheremeta M.M. On two classes of positive functions and belonging to them of main characteristics of
entire functions// Mat. Stud. – 2003. – V.19, №1. – P. 74–82.
|
| Pages |
54-66 |
| Volume |
39 |
| Issue |
1 |
| Year |
2013 |
Journal |
Matematychni Studii |
| Full text of paper |
PDF |
| Table of content of issue |
HTML |