Loading [MathJax]/jax/output/HTML-CSS/jax.js

Topological classification of pairs of counter linear maps (in Ukrainian)

Author T. V. Rybalkina
rybalkina_t@ukr.net
Інститут математики НАН України

Abstract We consider pairs of linear mappings (A,B) of the form VA1B1W in which V and W are finite dimensional unitary or Euclidean spaces over C or R, respectively. Let (A,B) be transformed to VA1B1W by bijections φ1:VV and φ2:WW. We say that (A,B) and (A,B) are linearly equivalent if φ1 and φ2 are linear bijections and topologically equivalent if φ1 and φ2 are homeomorphisms. We prove that (A,B) and (A,B) are topologically equivalent if and only if their regular parts are topologically equivalent and their singular parts are linearly equivalent.
Keywords pairs of counter maps; topological equivalence
Reference 1. Dobrovol'skaya N.M., Ponomarev V.A. A pair of counter-operators// Uspekhi Mat. Nauk. - 1965. - V.20, №6. - P. 80-86. (in Russian)

2. Blanc J. Conjugacy classes of affine automorphisms of Kn and linear automorphisms of Pn in the Cremona groups// Manuscripta Math. - 2006. - V.119, №2. - P. 225-241.

3. Budnitska T.V. Classification of topological conjugate affine mappings// Ukrainian Math. J. - 2009. - V.61. - P. 164-170.

4. Budnitska T. Topological classification of affine operators on unitary and Euclidean spaces// Linear Algebra Appl. - 2011. - V.434. - P. 582-592.

5. Budnitska T., Budnitska N. Classification of affine operators up to biregular conjugacy// Linear Algebra Appl. - 2011. - V.434. - P. 1195-1199.

6. Cappell S.E., Shaneson J.L. Linear algebra and topology// Bull. Amer. Math. Soc., New Series. - 1979. - V.1, №4. - P. 685-687.

7. Cappell S.E., Shaneson J.L. Nonlinear similarity of matrices// Bull. Amer. Math. Soc., New Series. - 1979. - V.1, №6.- P. 899-902.

8. Cappell S.E., Shaneson J.L. Non-linear similarity// Ann. of Math. - 1981. - V.113, №2. - P. 315-355.

9. Cappell S.E., Shaneson J.L. Non-linear similarity and linear similarity are equivariant below dimension 6// Contemp. Math. - 1999. - V.231. - P. 59-66.

10. Cappell S.E., Shaneson J.L., Steinberger M., West J.E. Nonlinear similarity begins in dimension six// Amer. J. Math. - 1989. - V.111. - P. 717-752.

11. Ephramowitsch W. Topologische Klassifikation affiner Abbildungen der Ebene// Mat. Sb. - 1935. - V.42, №1. - P. 23-36.

12. Horn R.A., Merino D.I. Contragredient equivalence: a canonical form and some applications// Linear Algebra Appl. - 1995. - V.214. - P. 43-92.

13. Hsiang W.C., Pardon W. When are topologically equivalent orthogonal transformations linearly equivalent// Invent. Math. - 1982. - V.68, №2. - P. 275-316.

14. McCleary J. A First Course in Topology: Continuity and Dimension, American Mathematical Society, 2006.

15. Kuiper N.H., Robbin J.W. Topological classification of linear endomorphisms// Invent. Math. - 1973. - V.19, №2. - P. 83-106.

16. Robbin J.W. Topological conjugacy and structural stability for discrete dynamical systems// Bull. Amer. Math. Soc. - 1972. - V.78, №6. - P. 923-952.

17. Rybalkina T., Sergeichuk V.V. Topological classification of chains of linear mappings// Linear Algebra Appl. - 2012. - V.437. - P. 860-869.

18. Sergeichuk V.V. Computation of canonical matrices for chains and cycles of linear mappings// Linear Algebra Appl. - 2004. - V.376. - P. 235-263.

Pages 21-28
Volume 39
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML