Abstract |
We consider pairs of linear mappings
(A,B) of the form
VA→←1B1W
in which V and W are
finite dimensional unitary or Euclidean spaces over C
or R, respectively. Let (A,B) be
transformed to VA′→←1B′1W
by bijections
φ1:V→V′ and φ2:W→W′. We say
that (A,B) and (A′,B′) are linearly
equivalent if φ1 and φ2 are linear bijections
and topologically equivalent if φ1 and φ2
are homeomorphisms. We prove that (A,B) and (A′,B′) are topologically equivalent if and only if their
regular parts are topologically equivalent and their singular
parts are linearly
equivalent. |
Reference |
1. Dobrovol'skaya
N.M., Ponomarev V.A. A pair
of counter-operators// Uspekhi
Mat. Nauk. - 1965. - V.20, №6. -
P. 80-86. (in Russian)
2. Blanc J.
Conjugacy
classes of affine automorphisms of
Kn and linear automorphisms of
Pn in the Cremona groups//
Manuscripta Math. - 2006. - V.119, №2. - P. 225-241.
3. Budnitska T.V. Classification of topological conjugate affine mappings//
Ukrainian Math. J. - 2009. - V.61.
- P. 164-170.
4. Budnitska T.
Topological classification of
affine operators on unitary and
Euclidean spaces// Linear Algebra
Appl. - 2011. - V.434. - P. 582-592.
5. Budnitska T.,
Budnitska N. Classification
of affine operators up to biregular
conjugacy// Linear Algebra Appl.
- 2011. - V.434. - P. 1195-1199.
6. Cappell S.E.,
Shaneson J.L. Linear algebra
and
topology// Bull. Amer. Math.
Soc., New Series. - 1979. - V.1, №4. - P. 685-687.
7. Cappell
S.E., Shaneson J.L.
Nonlinear
similarity of matrices// Bull. Amer.
Math. Soc., New Series. - 1979. -
V.1, №6.- P. 899-902.
8. Cappell S.E.,
Shaneson J.L. Non-linear
similarity// Ann. of Math. -
1981. - V.113, №2. - P. 315-355.
9. Cappell S.E.,
Shaneson J.L. Non-linear
similarity and linear similarity
are equivariant below dimension 6//
Contemp. Math. - 1999. - V.231. - P. 59-66.
10. Cappell S.E.,
Shaneson J.L., Steinberger M., West
J.E. Nonlinear similarity
begins in dimension six// Amer. J.
Math. - 1989. - V.111. - P.
717-752.
11. Ephramowitsch W.
Topologische Klassifikation affiner
Abbildungen der Ebene//
Mat. Sb. - 1935. - V.42, №1. - P. 23-36.
12. Horn R.A., Merino
D.I. Contragredient
equivalence:
a canonical form and some
applications// Linear Algebra Appl. - 1995. - V.214. - P. 43-92.
13. Hsiang W.C., Pardon
W. When are topologically
equivalent orthogonal
transformations linearly
equivalent// Invent. Math.
- 1982. - V.68, №2. - P. 275-316.
14. McCleary J. A First Course in Topology: Continuity and Dimension,
American Mathematical Society, 2006.
15. Kuiper N.H., Robbin
J.W. Topological
classification
of linear endomorphisms// Invent.
Math. - 1973. - V.19, №2. - P. 83-106.
16. Robbin J.W.
Topological
conjugacy and structural stability
for discrete dynamical systems//
Bull. Amer. Math. Soc. -
1972. - V.78, №6. - P. 923-952.
17. Rybalkina T.,
Sergeichuk V.V. Topological
classification of chains of linear
mappings// Linear
Algebra Appl. - 2012. - V.437. - P. 860-869.
18. Sergeichuk V.V.
Computation of canonical matrices
for chains and cycles of linear
mappings// Linear Algebra Appl. - 2004. - V.376. - P. 235-263.
|