Topological classification of pairs of counter linear maps (in Ukrainian)

Author T. V. Rybalkina
rybalkina_t@ukr.net
Інститут математики НАН України

Abstract We consider pairs of linear mappings $(\cal A,\cal B)$ of the form $V\underset{\overleftarrow{\mathcal{\phantom{1}B\phantom{1}}}}{\xrightarrow{\mathcal{A}}}W$ in which $V$ and $W$ are finite dimensional unitary or Euclidean spaces over $\mathbb{C}$ or $\mathbb{R}$, respectively. Let $(\cal A,\cal B)$ be transformed to $V\underset{\overleftarrow{\phantom{1}\mathcal{B'}\phantom{1}}}{\xrightarrow{\mathcal{A'}}}W$ by bijections $\varphi_1\colon V\to V'$ and $\varphi_2\colon W\to W'$. We say that $(\cal A,\cal B)$ and $(\cal A',\cal B')$ are linearly equivalent if $\varphi_1$ and $\varphi_2$ are linear bijections and topologically equivalent if $ \varphi_1 $ and $ \varphi_2 $ are homeomorphisms. We prove that $(\cal A,\cal B)$ and $(\cal A',\cal B')$ are topologically equivalent if and only if their regular parts are topologically equivalent and their singular parts are linearly equivalent.
Keywords pairs of counter maps; topological equivalence
Reference 1. Dobrovol'skaya N.M., Ponomarev V.A. A pair of counter-operators// Uspekhi Mat. Nauk. - 1965. - V.20, №6. - P. 80-86. (in Russian)

2. Blanc J. Conjugacy classes of affine automorphisms of $\mathbb K^n$ and linear automorphisms of $\mathbb P^n$ in the Cremona groups// Manuscripta Math. - 2006. - V.119, №2. - P. 225-241.

3. Budnitska T.V. Classification of topological conjugate affine mappings// Ukrainian Math. J. - 2009. - V.61. - P. 164-170.

4. Budnitska T. Topological classification of affine operators on unitary and Euclidean spaces// Linear Algebra Appl. - 2011. - V.434. - P. 582-592.

5. Budnitska T., Budnitska N. Classification of affine operators up to biregular conjugacy// Linear Algebra Appl. - 2011. - V.434. - P. 1195-1199.

6. Cappell S.E., Shaneson J.L. Linear algebra and topology// Bull. Amer. Math. Soc., New Series. - 1979. - V.1, №4. - P. 685-687.

7. Cappell S.E., Shaneson J.L. Nonlinear similarity of matrices// Bull. Amer. Math. Soc., New Series. - 1979. - V.1, №6.- P. 899-902.

8. Cappell S.E., Shaneson J.L. Non-linear similarity// Ann. of Math. - 1981. - V.113, №2. - P. 315-355.

9. Cappell S.E., Shaneson J.L. Non-linear similarity and linear similarity are equivariant below dimension 6// Contemp. Math. - 1999. - V.231. - P. 59-66.

10. Cappell S.E., Shaneson J.L., Steinberger M., West J.E. Nonlinear similarity begins in dimension six// Amer. J. Math. - 1989. - V.111. - P. 717-752.

11. Ephramowitsch W. Topologische Klassifikation affiner Abbildungen der Ebene// Mat. Sb. - 1935. - V.42, №1. - P. 23-36.

12. Horn R.A., Merino D.I. Contragredient equivalence: a canonical form and some applications// Linear Algebra Appl. - 1995. - V.214. - P. 43-92.

13. Hsiang W.C., Pardon W. When are topologically equivalent orthogonal transformations linearly equivalent// Invent. Math. - 1982. - V.68, №2. - P. 275-316.

14. McCleary J. A First Course in Topology: Continuity and Dimension, American Mathematical Society, 2006.

15. Kuiper N.H., Robbin J.W. Topological classification of linear endomorphisms// Invent. Math. - 1973. - V.19, №2. - P. 83-106.

16. Robbin J.W. Topological conjugacy and structural stability for discrete dynamical systems// Bull. Amer. Math. Soc. - 1972. - V.78, №6. - P. 923-952.

17. Rybalkina T., Sergeichuk V.V. Topological classification of chains of linear mappings// Linear Algebra Appl. - 2012. - V.437. - P. 860-869.

18. Sergeichuk V.V. Computation of canonical matrices for chains and cycles of linear mappings// Linear Algebra Appl. - 2004. - V.376. - P. 235-263.

Pages 21-28
Volume 39
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML