Abstract |
We consider pairs of linear mappings
$(\cal A,\cal B)$ of the form
$V\underset{\overleftarrow{\mathcal{\phantom{1}B\phantom{1}}}}{\xrightarrow{\mathcal{A}}}W$
in which $V$ and $W$ are
finite dimensional unitary or Euclidean spaces over $\mathbb{C}$
or $\mathbb{R}$, respectively. Let $(\cal A,\cal B)$ be
transformed to $V\underset{\overleftarrow{\phantom{1}\mathcal{B'}\phantom{1}}}{\xrightarrow{\mathcal{A'}}}W$
by bijections
$\varphi_1\colon V\to V'$ and $\varphi_2\colon W\to W'$. We say
that $(\cal A,\cal B)$ and $(\cal A',\cal B')$ are linearly
equivalent if $\varphi_1$ and $\varphi_2$ are linear bijections
and topologically equivalent if $ \varphi_1 $ and $ \varphi_2 $
are homeomorphisms. We prove that $(\cal A,\cal B)$ and $(\cal
A',\cal B')$ are topologically equivalent if and only if their
regular parts are topologically equivalent and their singular
parts are linearly
equivalent. |
Reference |
1. Dobrovol'skaya
N.M., Ponomarev V.A. A pair
of counter-operators// Uspekhi
Mat. Nauk. - 1965. - V.20, №6. -
P. 80-86. (in Russian)
2. Blanc J.
Conjugacy
classes of affine automorphisms of
$\mathbb K^n$ and linear automorphisms of
$\mathbb P^n$ in the Cremona groups//
Manuscripta Math. - 2006. - V.119, №2. - P. 225-241.
3. Budnitska T.V. Classification of topological conjugate affine mappings//
Ukrainian Math. J. - 2009. - V.61.
- P. 164-170.
4. Budnitska T.
Topological classification of
affine operators on unitary and
Euclidean spaces// Linear Algebra
Appl. - 2011. - V.434. - P. 582-592.
5. Budnitska T.,
Budnitska N. Classification
of affine operators up to biregular
conjugacy// Linear Algebra Appl.
- 2011. - V.434. - P. 1195-1199.
6. Cappell S.E.,
Shaneson J.L. Linear algebra
and
topology// Bull. Amer. Math.
Soc., New Series. - 1979. - V.1, №4. - P. 685-687.
7. Cappell
S.E., Shaneson J.L.
Nonlinear
similarity of matrices// Bull. Amer.
Math. Soc., New Series. - 1979. -
V.1, №6.- P. 899-902.
8. Cappell S.E.,
Shaneson J.L. Non-linear
similarity// Ann. of Math. -
1981. - V.113, №2. - P. 315-355.
9. Cappell S.E.,
Shaneson J.L. Non-linear
similarity and linear similarity
are equivariant below dimension 6//
Contemp. Math. - 1999. - V.231. - P. 59-66.
10. Cappell S.E.,
Shaneson J.L., Steinberger M., West
J.E. Nonlinear similarity
begins in dimension six// Amer. J.
Math. - 1989. - V.111. - P.
717-752.
11. Ephramowitsch W.
Topologische Klassifikation affiner
Abbildungen der Ebene//
Mat. Sb. - 1935. - V.42, №1. - P. 23-36.
12. Horn R.A., Merino
D.I. Contragredient
equivalence:
a canonical form and some
applications// Linear Algebra Appl. - 1995. - V.214. - P. 43-92.
13. Hsiang W.C., Pardon
W. When are topologically
equivalent orthogonal
transformations linearly
equivalent// Invent. Math.
- 1982. - V.68, №2. - P. 275-316.
14. McCleary J. A First Course in Topology: Continuity and Dimension,
American Mathematical Society, 2006.
15. Kuiper N.H., Robbin
J.W. Topological
classification
of linear endomorphisms// Invent.
Math. - 1973. - V.19, №2. - P. 83-106.
16. Robbin J.W.
Topological
conjugacy and structural stability
for discrete dynamical systems//
Bull. Amer. Math. Soc. -
1972. - V.78, №6. - P. 923-952.
17. Rybalkina T.,
Sergeichuk V.V. Topological
classification of chains of linear
mappings// Linear
Algebra Appl. - 2012. - V.437. - P. 860-869.
18. Sergeichuk V.V.
Computation of canonical matrices
for chains and cycles of linear
mappings// Linear Algebra Appl. - 2004. - V.376. - P. 235-263.
|