|
Simultaneous approximation of modulus and values of
Jacobi elliptic functions (in Ukrainian) |
Author |
Ya. M. Kholyavka
ya_khol@franko.lviv.ua
Ivan Franko National University of L'viv
|
Abstract |
Let $\operatorname{sn}_i z$ be algebraically independent Jacobi elliptic
functions, $(4K_i,2iK'_i)$ be main periods and $\varkappa_1, \varkappa_2$
be their moduli $\operatorname{sn}_i z$ ($i\in\{1,2\}$). We estimate from below the
simultaneous approximation $\varkappa_1, \varkappa_2, \operatorname{sn}_1
K_2, \operatorname{sn}_2i K'_1$. |
Keywords |
simultaneous approximation; Jacobi elliptic function |
Reference |
1. Bateman H., Erdelyi A. Higher transcendental functions. – M.: Nauka, V.3, 1967. (in Russian)
2. Lawden D.F. Elliptic functions and applications. – Springer-Verlag, Berlin, 1989.
3. Fel’dman N.I. Hilbert’s seventh problem. – M.: Moscov. Gos. Univ., 1982. (in Russian)
4. Fel’dman N.I., Nesterenko Yu.V. Transcendental Numbers. – Springer-Verlag, Berlin, 1998.
5. Reyssat E. Approximation algebrique de nombres lies aux fonctions elliptique et exp// Bull. Soc. Math.
France. – 1980. – V.108. – P. 47–79.
6. Masser D. Elliptic functions and transcendence. – Springer-Verlag, Berlin, 1975.
7. Kholyavka Ya.M. On the simultaneous approximation of invariants of the elliptic function by algebraic
numbers// Diophantine Analysis, Izd. Mosk. Gos. Univ., Moscow. – 1986. – Part 2. – P. 114–121. (in
Russian)
8. Nesterenko Yu.V. On a measure of algebraic independence of values of an elliptic function// Izvestiya
RAN: Ser. Mat. – 1995. – V.59, .4. – P. 155–178. (in Russian)
9. Chudnovsky G.V. Algebraic independence of the values of elliptic functions at algebraic points; Elliptic
analogue of the Lindemann–Weierschtrass theorem// Inventiones Math. – 1980. – V.61. – P. 267–290.
|
Pages |
10-15 |
Volume |
39 |
Issue |
1 |
Year |
2013 |
Journal |
Matematychni Studii |
Full text of paper |
PDF |
Table of content of issue |
HTML |